Encyclopedia of Biometrics

Living Edition
| Editors: Stan Z. Li, Anil K. Jain

Anti-spoofing: Evaluation Methodologies

  • Ivana Chingovska
  • André Anjos
  • Sébastien Marcel
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27733-7_9212-2

Synonyms

Definition

Following the definition of the task of the anti-spoofing systems to discriminate between real accesses and spoofing attacks, anti-spoofing can be regarded as a binary classification problem. The spoofing databases and the evaluation methodologies for anti-spoofing systems most often comply to the standards for binary classification problems. However, the anti-spoofing systems are not destined to work stand-alone, and their main purpose is to protect a verification system from spoofing attacks. In the process of combining the decision of an anti-spoofing and a recognition system, effects on the recognition performance can be expected. Therefore, it is important to analyze the problem of anti-spoofing under the umbrella of biometric recognition systems. This brings certain requirements in the database design, as well as adapted concepts for evaluation of biometric recognition systems under spoofing attacks.

Introduction...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    E. Marasco, Y. Ding, A. Ross, Combining match scores with liveness values in a fingerprint verification system, in 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, 2012Google Scholar
  2. 2.
    J. Galbally, F. Alonso-Fernandez, J. Fierrez, J. Ortega-Garcia, A high performance fingerprint liveness detection method based on quality related features. Future Gener. Comput. Syst. 28(1), 311–321 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Pan, L. Sun, Z. Wu, S. Lao, Eyeblink-based anti-spoofing in face recognition from a generic webcamera, in IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, 2007, pp. 1–8Google Scholar
  4. 4.
    W. Bao, H. Li, N. Li, W. Jiang, A liveness detection method for face recognition based on optical flow field, in International Conference on Image Analysis and Signal Processing, IASP 2009, Linhai, 2009, pp. 233–236Google Scholar
  5. 5.
    P.Johnson, R. Lazarick, E. Marasco, E. Newton, A. Ross, S. Schuckers, Biometric liveness detection: framework and metrics, in International Biometric Performance Conference, 2012Google Scholar
  6. 6.
    N. Poh, S. Bengio, Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication. Pattern Recognit. J. 39, 223–233 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Martin, G. Doddington, T. Kamm, M.M. Ordowski, The DET curve in assessment of detection task performance, in Eurospeech, Rhodes, 1997, pp. 1895–1898Google Scholar
  8. 8.
    S. Bengio, J. Mariéthoz, M. Keller, The expected performance curve, in International Conference on Machine Learning, ICML, Workshop on ROC Analysis in Machine Learning, 2005Google Scholar
  9. 9.
    P.A. Johnson, B. Tan, S. Schuckers, Multimodal fusion vulnerability to non-zero (spoof) imposters, in IEEE International Workshop on Information Forensics and Security, Seattle, 2010Google Scholar
  10. 10.
    J. Galbally, R. Cappelli, A. Lumini, G.G. de Rivera, D. Maltoni, J. Fiérrez, J. Ortega-Garcia, D. Maio, An evaluation of direct attacks using fake fingers generated from iso templates. Pattern Recognit. Lett. 31(8), 725–732 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Galbally-Herrero, J. Fierrez-Aguilar, J.D. Rodriguez-Gonzalez, F. Alonso-Fernandez, J. Ortega-Garcia, M. Tapiador, On the vulnerability of fingerprint verification systems to fake fingerprints attacks, in IEEE International Carnahan Conference on Security Technology, Lexington, 2006, pp. 169–179Google Scholar
  12. 12.
    A. Adler, S. Schuckers, Security and liveness, overview, in Encyclopedia of Biometrics, ed. by S.Z. Li, A.K. Jain (Springer, New York, 2009), pp. 1146–1152Google Scholar
  13. 13.
    R. Rodrigues, N. Kamat, V. Govindaraju, Evaluation of biometric spoofing in a multimodal system, in 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), Washington, DC, 2010Google Scholar
  14. 14.
    J.-F. Bonastre, D. Matrouf, C. Fredouille, Artificial impostor voice transformation effects on false acceptance rates, in INTERSPEECH, Antwerp, 2007, pp. 2053–2056Google Scholar
  15. 15.
    V. Ruiz-Albacete, P. Tome-Gonzalez, F. Alonso-Fernandez, J. Galbally, J. Fierrez, J. Ortega-Garcia, Direct attacks using fake images in iris verification, in Proceedings of COST 2101 Workshop on Biometrics and Identity Management, BIOID, Roskilde (Springer, 2008), pp. 181–190Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ivana Chingovska
    • 1
  • André Anjos
    • 1
  • Sébastien Marcel
    • 1
  1. 1.Idiap Research InstituteMartignySwitzerland