Anterior Pituitary Hormones

Living reference work entry

Abstract

Much of the early research on anterior pituitary hormones was performed with extracts obtained from animal pituitary glands and with animal models for the specific analytical determination of the concentrations of anterior pituitary hormones in serum, in pituitary tissue, and in some cases by measurement of urinary excretion, for hormones which are excreted during pregnancy, for example. Biosynthetic hormone preparations are now available for human therapy, and species-specific hormone standards are also available for numerous animal species. For an understanding of the development of endocrine research, and the approach to understanding physiology that was necessary, helpful, and effective, reference is made extensively to historical methods that are no longer required. As with other fields, the receptors for hypothalamic hormones and anterior pituitary hormones have been characterized and studied, for both a better understanding of regulation and in several cases structure–activity studies. This approach has also been very helpful in understanding how the sensitivity of the pituitary gland is regulated by both negative feedback of gonadal steroids and the impact of hypothalamic hormones.

Keywords

Growth Hormone Luteinizing Hormone Granulosa Cell Leydig Cell Growth Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Hypophysectomy in Rats

  1. Anselmino KJ, Pecharz RI (1935) Über die Technik der Hypophysenexstirpation bei verschiedenen Versuchstieren. Z Exp Med 93:660–665Google Scholar
  2. Biedl A (1916) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Dritte Auflage, zweiter Teil. Urban and Schwarzenberg, Berlin, pp 111–126Google Scholar
  3. Bomskov C (1939) Die Exstirpation der Hypophyse im Tierversuch. In: Methodik der Hormonfoschung. 2. Band, G. Thieme, Leipzig, pp 553–587Google Scholar
  4. Burn JH, Finney DJ, Goodwin LG (1952) Biological standardization. Anterior lobe of the pituitary gland. Oxford University Press, Oxford, pp 268–279Google Scholar
  5. Collip JB, Selye H, Thompson DL (1933a) Beiträge zur Kenntnis der Physiologie des Gehirnanhanges. Virchows Arch 290:23–46Google Scholar
  6. Collip JB, Selye H, Thompson DL (1933b) Gonad-stimulating hormones in hypophysectomised animals. Nature 131:56Google Scholar
  7. Loeser A, Thompson KW (1934) Hypophysenvorderlappen, Jod und Schilddrüse. Endokrinologie 14:144–150Google Scholar
  8. Smith PE (1927) The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. J Am Med Assoc 88:158–161Google Scholar
  9. Thompson KW (1932) A technique for hypophysectomy of the rat. Endocrinology 16:257–263Google Scholar
  10. Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34Google Scholar
  11. Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24Google Scholar
  12. Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropin-Aktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27Google Scholar

Gonadotropins

  1. Dahl KD, Stone MP (1991) FSH isoforms, radioimmunoassays, bioassays, and their significance. J Androl 13:11–22Google Scholar
  2. Imse V, Holzapfel G, Hinney B, Kuhn W, Wuttke W (1992) Comparison of luteinizing hormone pulsatility in the serum of women suffering from polycystic ovarian disease using a bioassay and five different immunoassays. J Clin Endocrinol Metab 74:1053–1061PubMedGoogle Scholar
  3. Iwasawa A, Tomizawa KL, Wakabayashi K, Kato Y (1994) Time-resolved fluoroimmunoassay (TR-FIA) of gonadotropins. Exp Clin Endocrinol 102:39–43PubMedGoogle Scholar
  4. Poyner DR, Hanley MR (1992) Molecular biology of peptide and glycoprotein hormone receptors. In: Braun MR (ed) Molecular biology of G-protein-coupled receptors. Birkhäuser, Boston, pp 198–232Google Scholar
  5. Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997Google Scholar
  6. Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293Google Scholar
  7. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod 3:491–501Google Scholar

Follicle-Stimulating Hormone (FSH)

  1. British Pharmacopoeia (1988) Biological assay of menotrophin. Follicle stimulating hormone activity. Appendix XIV C. HMSO, London, p A165Google Scholar
  2. Brown PS (1955) The assay of gonadotrophin from urine of non-pregnant human subjects. J Endocrinol 13:59–64PubMedGoogle Scholar
  3. Brown PS, Wells M (1966) Observations on the assay of human urinary follicle-stimulating hormone by the augmentation test in mice. J Endocrinol 35:199–206PubMedGoogle Scholar
  4. Christiansen P (1972a) Studies on the rat ovarian augmentation method for follicle stimulating hormone. Acta Endocrinol 70:636–646PubMedGoogle Scholar
  5. Christiansen P (1972b) The rat ovarian augmentation method for follicle stimulating hormone. Specificity of the test. Acta Endocrinol (Kbh) 70:647–653Google Scholar
  6. Evans HM, Simpson ME, Tolksdorf S, Jensen H (1939) Biological studies of the gonadotropic principles in sheep pituitary substance. Endocrinology 25:529–546Google Scholar
  7. Gans E, van Rees GP (1966) Studies on the testicular augmentation assay method for follicle stimulating hormone. Acta Endocrinol 52:573–582PubMedGoogle Scholar
  8. Igarashi M, McCann SM (1964) A new sensitive bioassay for follicle-stimulating hormone. Endocrinology 74:440–445PubMedGoogle Scholar
  9. Lamond DR, Bindon BM (1966) The biological assay of follicle-stimulating hormone in hypophysectomized immature mice. J Endocrinol 34:365–376PubMedGoogle Scholar
  10. Parlow AF, Reichert LE Jr (1963) Species differences in follicle-stimulating hormone as revealed by the slope in the Steelman–Pohley assay. Endocrinology 73:740–743Google Scholar
  11. Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608Google Scholar
  12. Steelman SL, Pohley FM (1953) Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 53:604–616Google Scholar
  13. Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293Google Scholar
  14. Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinol 91:353–362Google Scholar
  15. Uberoi NK, Meyer RK (1967) Uterine weight of the immature rat as a measure of augmentation of pituitary gonadotrophins by human chorionic gonadotrophin (HCG). Fertil Steril 18:420–428PubMedGoogle Scholar
  16. Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol 113:17–22Google Scholar

[3H]Thymidine Uptake in Cultured Mouse Ovaries

  1. Boggins J, Ryle M (1972) An in-vitro procedure for the quantitative measurement of follicle-stimulating activity. J Endocrinol 54:355–356Google Scholar
  2. Boland NI, Humpherson PG, Leese HJ, Gosden RG (1993) Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod 48:798–806PubMedGoogle Scholar
  3. Ryle M (1971) The activity of human follicle-stimulating hormone preparations as measured by a response in vitro. J Endocrinol 51:97–107PubMedGoogle Scholar

Granulosa Cell Aromatase Assay in Vitro

  1. Ax RL, Ryan RJ (1979) FSH stimulation of 3H-glucosamine incorporation into proteoglycans by porcine granulosa cells in vitro. J Clin Endocrinol Metab 49:646–648PubMedGoogle Scholar
  2. Beers WH, Strickland S (1978) A cell culture assay for follicle-stimulating hormone. J Biol Chem 253:3877–3881PubMedGoogle Scholar
  3. Bhargava G, Poretsky L, Denman H, Jandorek R, Miller LK (1989) Hormonally active long-term culture of human ovarian cells: initial characterization. Metabolism 38:195–196PubMedGoogle Scholar
  4. Combarnous Y, Guillou F, Martinat N (1984) Comparison of in vitro follicle-stimulating hormone (FSH) activity of equine gonadotropins (luteinizing hormone, FSH, and chorionic gonadotropin) in male and female rats. Endocrinology 115:1821–1827PubMedGoogle Scholar
  5. Dahl KD, Papkoff H, Hsueh AJW (1989) Effects of diverse mammalian and nonmammalian gonadotropins in a rat granulosa cell bioassay for follicle-stimulating hormone. Gen Comp Endocrinol 73:368–373PubMedGoogle Scholar
  6. Dorrington JH, Moon YS, Armstrong DT (1975) Estradiol-17β biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology 97:1328–1331Google Scholar
  7. Fauser BCJM, Soto D, Czekala NM, Hsueh AJW (1989) Granulosa cell aromatase bioassay: changes of bioactive FSH levels in the female. J Steroid Biochem 33:721–726PubMedGoogle Scholar
  8. Hsueh AJW, Erickson GF, Papkoff H (1983) Effect of diverse mammalian gonadotrophins on estrogen and progesterone production by cultured rat granulosa cells. Arch Biochem Biophys 225:505–511PubMedGoogle Scholar
  9. Hsueh AJW, Adashi EY, Jones PBC, Welsh TH (1984) Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 5:76–127PubMedGoogle Scholar
  10. Jia XC, Hsueh AJW (1985) Sensitive in vitro bioassay for the measurement of serum follicle-stimulating hormone. Neuroendocrinology 41:445–448PubMedGoogle Scholar
  11. Jia XC, Hsueh AJW (1986) Granulosa cell aromatase bioassay for follicle-stimulating hormone: validation and application of the method. Endocrinology 119:1570–1577PubMedGoogle Scholar
  12. Matzkin H, Homonnai ZT, Galiani D, Paz G, Dekel N (1990) Serum bioactive and immunoreactive follicle-stimulating hormone in oligozoospermic and azoospermic men: application of a modified granulosa cell bioassay. Fertil Steril 53:709–714PubMedGoogle Scholar
  13. Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997Google Scholar
  14. Steelman SL, Pohley FM (1953) Assay of follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 53:604–616Google Scholar
  15. Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293Google Scholar
  16. Thakur AN, Coles R, Sesay A, Earley B, Jacobs HS, Ekins RP (1990) A rat granulosa cell plasminogen activator bioassay for FSH in human serum. J Endocrinol 126:159–168PubMedGoogle Scholar
  17. Wang C, Leung A (1983) Gonadotropins regulate plasminogen activator production by rat granulosa cells. Endocrinology 112:1201–1207PubMedGoogle Scholar
  18. YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49Google Scholar

Sertoli Cell Aromatase Assay in Vitro

  1. Dorrington JH, Armstrong DT (1975) Follicle-stimulating hormone stimulates estradiol-17β synthesis in cultured Sertoli cells. Proc Natl Acad Sci U S A 72:2677–2681PubMedCentralPubMedGoogle Scholar
  2. Dorrington JH, Roller NF, Fritz IB (1975b) Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol 3:57–70PubMedGoogle Scholar
  3. England BG, Niswender GD, Midgley AR (1974) Radioimmunoassay of estradiol-17β without chromatography. J Clin Endocrinol Metab 38:42–50PubMedGoogle Scholar
  4. Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130Google Scholar
  5. Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061Google Scholar
  6. Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194Google Scholar
  7. Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrinol 92:599–614Google Scholar
  8. Padmanabhan V, Chappel SC, Beitins I (1987) An improved in vitro bioassay for follicle-stimulating hormone (FSH): suitable for measurement of FSH in unextracted human serum. Endocrinology 121:1089–1098PubMedGoogle Scholar
  9. Rao AJ, Ramachandran J (1975) Cyclic AMP production in isolated rat seminiferous tubule cell preparations: a potential in vitro assay for follicle stimulating hormone. Life Sci 17:411–416PubMedGoogle Scholar
  10. Ritzén EM, Fröysa B, Gustafsson B, Westerholm G, Diczfalusy E (1982) Improved bioassay of follitropin. Horm Res 16:42–48PubMedGoogle Scholar
  11. Sairam MR, Manjunath P (1982) Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol 28:139–150PubMedGoogle Scholar
  12. Shah GV, Ritzén EM (1984) Validation of a bioassay for follitropin in urine samples. J Endocrinol Invest 7(Suppl 3):59–66PubMedGoogle Scholar
  13. Simoni M, Nieschlag E (1991) In vitro bioassays of follicle-stimulating hormone: methods and clinical applications. J Endocrinol Invest 14:983–997Google Scholar
  14. Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293Google Scholar
  15. Storring PL, Zaidi AA, Mistry YG, Fröysa B, Stenning BE, Diczfalusy E (1981) A comparison of preparations of highly purified human pituitary follicle-stimulating hormone: differences in the follicle-stimulating hormone potencies as determined by in-vivo bioassay, in-vitro bioassay and immunoassay. J Endocrinol 91:353–362Google Scholar
  16. Van Damme MP, Robertson DM, Marana R, Ritzén EM, Diczfalusy E (1979) A sensitive and specific in vitro bioassay method for the measurement of follicle-stimulating hormone activity. Acta Endocrinol 91:224–237PubMedGoogle Scholar
  17. Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrinol Metab 56:371–375Google Scholar
  18. Wide L, Hobson B (1986) Influence of the assay method used on the selection of the most active forms of FSH from the human pituitary. Acta Endocrinol 113:17–22Google Scholar
  19. Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165Google Scholar
  20. Zaidi AA, Fröysa B, Diczfalusy E (1982) Biological and immunological properties of different molecular species of human follicle-stimulating hormone: electrofocusing profiles of eight highly purified preparations. J Endocrinol 92:195–204PubMedGoogle Scholar

Receptor Binding Assay for FSH

  1. Andersen TT, Curatolo LM, Reichert LE Jr (1983a) Follitropin binding to receptors in testis: studies on the reversibility and thermodynamics of the reaction. Mol Cell Endocrinol 33:37–52PubMedGoogle Scholar
  2. Andersen TT, Curatolo LM, Reichert LE Jr (1983b) Follitropin binding to receptors in testis: studies on the reversibility and thermodynamics of the reaction. Mol Cell Endocrinol 33:37–52PubMedGoogle Scholar
  3. Burgon PG, Robertson DM, Stanton PG, Hearn MTW (1993) Immunological activities of highly purified isoforms of human FSH correlate with in vitro bioactivities. J Endocrinol 139:511–518PubMedGoogle Scholar
  4. Calvo FO, Keutmann HT, Bergert ER, Ryan RJ (1986) Deglycosylated human follitropin: characterization and effects on adenosine cyclic 3′,5′-phosphate production in porcine granulosa cells. Biochemistry 25:3938–3943PubMedGoogle Scholar
  5. Cheng KW (1975) A radioreceptor assay for follicle-stimulating hormone. J Clin Endocrinol Metab 41:581–589PubMedGoogle Scholar
  6. Foulds LM, Robertson DM (1983) Electrofocusing fractionation and characterization of pituitary follicle-stimulating hormone from male and female rats. Mol Cell Endocrinol 31:117–130Google Scholar
  7. Grasso P, Heindel JJ, Powell CJ, Reichert LE Jr (1993) Effects of mono(2-ethylhexyl)phthalate, a testicular toxicant, on follicle-stimulating hormone binding to membranes of cultured rat Sertoli cells. Biol Reprod 48:454–459PubMedGoogle Scholar
  8. Ketelslegers JM, Catt KJ (1974) Receptor binding properties of 125I-hFSH prepared by enzymatic iodination. J Clin Endocrinol Metab 39:1159–1162PubMedGoogle Scholar
  9. Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619Google Scholar
  10. Marana R, Robertson DM, Suginami H, Diczfalusy E (1979) The assay of human follicle-stimulating hormone preparations: the choice of a suitable standard. Acta Endocrinol 92:599–614Google Scholar
  11. Reichert LE Jr (1976) Follicle-stimulating hormone: measurement by a rat testes tubule receptor assay. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 99–118Google Scholar
  12. Reichert LE, Bhalla VK (1974) Development of a radioligand receptor assay for human follicle stimulating hormone. Endocrinology 94:483–491PubMedGoogle Scholar
  13. Schwartz S, Bell J, Rechnitz S, Rabinowitz D (1973) Binding of human FSH and its subunits to rat testes. Eur J Clin Invest 3:475–481PubMedGoogle Scholar
  14. Simoni M, Jockenhovel F, Nieschlag E (1993a) Biological and immunological properties of the international standard for FSH 83/575: isoelectrofocusing profile and comparison with other FSH preparations. Acta Endocrinol 128:281–288PubMedGoogle Scholar
  15. Simoni M, Weinbauer GF, Nieschlag E (1993b) Molecular composition of two different batches of urofollitropin: analysis by immunofluorometric assay, radioligand receptor assay and in vitro bioassay. J Endocrinol Invest 16:21–27PubMedGoogle Scholar
  16. Storring PL, Gaines Das RE (1989) The International Standard for pituitary FSH: collaborative study of the Standard and of four other purified human FSH preparations of differing molecular composition by bioassays, receptor assays and different immunoassay systems. J Endocrinol 123:275–293Google Scholar
  17. Wakabayashi N, Suzuki A, Hoshino H, Nishimori K, Mizuno S (1997) The cDNA cloning and transient expression of a chicken gene encoding a follicle-stimulating hormone receptor. Gene 197:121–127PubMedGoogle Scholar
  18. Zaidi AA, Robertson DM, Diczfalusy E (1981) Studies on the biological and immunological properties of human follitropin: profile of two international reference preparations and of an aqueous extract of pituitary glands after electrofocusing. Acta Endocrinol 97:157–165Google Scholar

Prostate Weight in Hypophysectomized Rats

  1. British Pharmacopoeia (1988) Biological assay of menotrophin. Luteinising hormone activity. Appendix XIV C. HMSO, London, pp A165–A166Google Scholar
  2. Greep RO, van Dyke HB, Chow BF (1942) Gonadotropins of the swine pituitary. I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (ICSH). Endocrinology 30:635–649Google Scholar
  3. Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608Google Scholar
  4. Segaloff A, Steelman SL, Flores A (1956) Prolactin as a factor in the ventral prostate assay for luteinizing hormone. Endocrinology 59:233–240PubMedGoogle Scholar

Superovulation in Immature Rats

  1. Zarrow MX, Cladwell AL Jr, Hafez ESE, Pincus G (1958) Superovulation in the immature rat as a possible assay for LH and HCG. Endocrinology 63:748–758PubMedGoogle Scholar

Ascorbic Acid Depletion of Ovaries in PMSG/hCG-Primed Rats

  1. Parlow AF (1961) Bio-assay of pituitary luteinizing hormone by depletion of ovarian ascorbic acid. In: Albert A (ed) Human pituitary gonadotrophins, vol III. Thomas, Springfield, pp 1–300Google Scholar
  2. Parlow AF, Reichert LE Jr (1963) Influence of follicle-stimulating hormone on the prostate assay of luteinizing hormone (LH, ICSH). Endocrinology 73:377–385Google Scholar
  3. Sandow J, Schally AV, Schröder HG, Redding TW, Heptner W, Vogel HG (1972) Pharmacological characteristics of a synthetic releasing hormone LH/FSH-RH (Hoe 471). Arzneimittelforschung 22:1718–1721PubMedGoogle Scholar

Testosterone Production by Leydig Cells in Vitro Induced by LH

  1. Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95PubMedGoogle Scholar
  2. Bousfield GR, Liu WK, Ward DN (1989) Effects of removal of carboxy-terminal extension from equine luteinizing hormone (LH) β-subunit on LH and follicle-stimulating hormone receptor-binding activities and LH steroidogenic activity in rat testicular Leydig cells. Endocrinology 124:379–387PubMedGoogle Scholar
  3. Chen HC, Shimohigashi Y, Dufau ML, Catt KJ (1992) Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin. J Biol Chem 257:14446–14452Google Scholar
  4. Dahl KD, Sarkissian A (1993) Validation of an improved in vitro bioassay to measure LH in diverse species. J Androl 14:124–129PubMedGoogle Scholar
  5. Dufau ML, Catt KJ, Tsuruhara J (1972) A sensitive gonadotropin responsive system: radioimmunoassay of testosterone production by the rat testis in vitro. Endocrinology 90:1032–1040PubMedGoogle Scholar
  6. Dufau ML, Pock R, Neubauer A, Catt KJ (1976) In vitro bioassay of LH in human serum: the rat interstitial cell testosterone (RICT) assay. J Clin Endocrinol Metab 42:958–969PubMedGoogle Scholar
  7. Dufau ML, Tsuruhara T, Horner KA, Podesta E, Catt KJ (1977) Intermediate role of adenosine 3′:5′-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A 74:3419–3423PubMedCentralPubMedGoogle Scholar
  8. Haavisto AM, Dunkel L, Pettersson K, Huhtaniemi I (1990) LH measurements by in vitro bioassay and a highly sensitive immunofluorometric assay improve the distinction between boys with constitutional delay of puberty and hypogonadotropic hypogonadism. Pediatr Res 27:211–214PubMedGoogle Scholar
  9. Harlin J, Khan SA, Diczfalusy E (1988) Molecular composition of luteinizing hormone and follicle-stimulating hormone in commercial gonadotropin preparations. Fertil Steril 46:1055–1061Google Scholar
  10. Janszen FHA, Cooke BA, van Driel MJA, van der Molen HJ (1976) Purification and characterization of Leydig cells from rat testes. J Endocrinol 70:345–359PubMedGoogle Scholar
  11. Khan SA, Syed V, Fröysa B, Lindberg M, Diczfalusy E (1984) Influence of gonadectomy on isoelectrofocusing profiles of pituitary gonadotropins in rhesus monkeys. J Med Primatol 14:177–194Google Scholar
  12. Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39Google Scholar
  13. Rodgers M, Michell R, Lambert A, Peers N, Robertson WR (1992) Human chorionic gonadotropin contributes to the bioactivity of Pergonal. Clin Endocrinol 37:558–564Google Scholar
  14. Stadler U, Rovan E, Aulitzky W, Frick J, Adam H, Kalla N (1989) Bioassay for determination of human serum luteinizing hormone (LH): a routine clinical method. Andrologia 21:580–583PubMedGoogle Scholar
  15. Van Damme MP, Robertson DM, Diczfalusy E (1974) An improved in vitro bioassay method for measuring luteinizing hormone (LH) activity using mouse Leydig cell preparations. Acta Endocrinol 77:655–671PubMedGoogle Scholar
  16. Whitcomb RW, Schneyer AL (1990) Development and validation of a radioligand receptor assay for measurement of luteinizing hormone in human serum. J Clin Endocrinol Metab 71:591–595PubMedGoogle Scholar

Receptor Binding Assay for LH

  1. Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 175–250Google Scholar
  2. Chen W, Bahl OP (1993) High expression of the hormone binding active extracellular domain (1–294) of rat lutropin receptor in Escherichia coli. Mol Cell Endocrinol 91:35–41PubMedGoogle Scholar
  3. Jia XC, Perlas E, Su JGJ, Moran F, Lasley BL, Ny T, Hsueh AJW (1993) Luminescence luteinizing hormone/choriogonadotropin (LH/CG) bioassay: measurement of serum bioactive LH/CG during early pregnancy in human and macaque. Biol Reprod 49:1310–1316PubMedGoogle Scholar
  4. Lee CY, Ryan RJ (1972) Luteinizing hormone receptors: specific binding of human luteinizing hormone to homogenates of luteinized rat ovaries. Proc Natl Acad Sci U S A 69:3520–3523PubMedCentralPubMedGoogle Scholar
  5. Liu WK, Yang KP, Nakagawa Y, Ward DN (1974) The role of the amino group in subunit association and receptor site interaction for ovine luteinizing hormone as studied by acylation. J Biol Chem 249:5544–5550PubMedGoogle Scholar
  6. Liu WK, Furlong NB, Ward DN (1977) Effects of β subunit acylation on lutropin receptor site binding. J Biol Chem 252:522–527PubMedGoogle Scholar
  7. Liu WK, Young JD, Ward BN (1984) Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol 37:29–39Google Scholar
  8. Selvaraj N, Moudgal NR (1993) Development of an LH receptor assay capable of measuring serum LH/CG in a wide variety of species. J Reprod Fertil 98:611–616PubMedGoogle Scholar
  9. Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283Google Scholar
  10. Storring PL, Gaines-Das RE (1993) The second international standard for human pituitary LH: its collaborative study by bioassays and immunoassays. J Endocrinol 138:345–359PubMedGoogle Scholar

Other Gonadotropins

  1. Aschheim S, Zondek B (1927) Hypophysenvorderlappenhormon und Ovarialhormon im Harn von Schwangeren. Klin Wchschr 6:1322Google Scholar
  2. Hamburger C, Pedersen-Bjergaard K (1937) The assay of gonadotropic hormones. Standardisation curves for pregnant mare’s serum hormone and human pregnant urine hormone. Q J Pharm Pharmacol 10:662–676Google Scholar
  3. Zondek B (1935) Die hormonale Schwangerschaftsreaktion aus dem Harn bei Mensch und Tier. In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer, Berlin/Heidelberg/New York, pp 534–578Google Scholar

Biological Assay of hCG in Immature Male Rats

  1. British Pharmacopoeia (1988) Biological assay of chorionic gonadotrophin. Appendix XIV C. HMSO, London, pp A164–A165Google Scholar
  2. United States Pharmacopoeia USP 23 (1995) Chorionic gonadotropin. United States Pharmacopoeial Convention, Rockville, pp 718–719Google Scholar

Receptor Binding Assay for hCG

  1. Catt KJ, Dufau ML, Tsuruhara T (1972) Radioligand-receptor assay of luteinizing hormone and chorionic gonadotropin. J Clin Endocrinol Metab 34:123–132PubMedGoogle Scholar
  2. Catt KJ, Ketelslegers JM, Dufau ML (1976) Receptors for gonadotropic hormones. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 175–250Google Scholar
  3. Keutmann HT, McIlroy PJ, Bergert ER, Ryan RJ (1983) Chemically deglycosylated chorionic gonadotropin subunits: characterization and biological properties. Biochemistry 22:3067–3072PubMedGoogle Scholar
  4. Lee CY, Ryan RJ (1973) Interaction of ovarian receptors with human luteinizing hormone and human chorionic gonadotropin. Biochemistry 12:4609–4619Google Scholar
  5. Saxena BB (1976) Gonadotropin receptors. In: Blecher M (ed) Methods in receptor research. Part I. Dekker, New York, pp 251–299Google Scholar
  6. Selvaraj N, Dantes A, Limor R, Golander A, Amsterdam A (1996b) Establishment of an in vitro bioassay and radioreceptor assay for LH/CG in human sera using immortalized granulosa cells transfected with LH/CG receptor. Endocrine 5:275–283PubMedGoogle Scholar

Human Menopausal Gonadotropin (hMG)

  1. British Pharmacopoeia (1988) Biological assay of menotrophin. Follicle-stimulating activity. Appendix XIV C. HMSO, London, pp A165–A166Google Scholar

Pregnant Mares’ Serum Gonadotropin (PMSG)

  1. Hamburger C (1950) Gonadotropins, Chap VII. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 173–203Google Scholar

Immunoassays of Gonadotropins

  1. Armbruster DA, Haws LC (1990) Assay of follitropin and lutropin by fluorescence enzyme immunoassay. J Clin Lab Anal 4:170–174PubMedGoogle Scholar
  2. Faiman C, Ryan RJ (1967) Serum follicle-stimulating hormone and luteinizing hormone concentrations during the menstrual cycle as determined by radioimmunoassays. J Clin Endocrinol Metab 27:1711–1716PubMedGoogle Scholar
  3. Haavisto AM, Pettersson K, Bergendahl M, Perheentupa A, Roser FJ, Huhtaniemi I (1993) A supersensitive immunofluorometric assay for rat luteinizing hormone. Endocrinology 132:1687–1691PubMedGoogle Scholar
  4. Rosenfield RL, Helke J (1992) Is an immunoassay available for the measurement of bioactive LH in serum? J Androl 13:1–10PubMedGoogle Scholar
  5. Seth J, Hanning I, Bacon RRA, Hunter WM (1989) Progress and problems in immunoassays for pituitary gonadotrophins: evidence from the UK external quality assessment schemes, (EQAS) 1980–1988. Clin Chim Acta 186:67–82PubMedGoogle Scholar
  6. Terouanne B, Alameddine S, Martin JL, Nicolas JC, Cristol P, Sultan C, de Paulet AC (1989) Dosage par bioluminescence de l’hormone lutéinisante dans le plasma et l’urine. Ann Biol Clin 47:15–21Google Scholar
  7. Ulloa-Aguirre A, Espinoza R, Damian-Matsumura P, Chappel SC (1988) Immunological and biological potencies of the different molecular species of gonadotrophins. Hum Reprod 3:491–501Google Scholar
  8. Weiss P, Zech H, Schönholzer HP, Fritzsche H (1992) Abbott IMx and Serono MAIAclone assays compared for lutropin determinations in urine. Clin Chem 38:2280–2283PubMedGoogle Scholar
  9. Wheeler MJ (1991) The radioimmunoassay of gonadotrophins. In: Greenstein B (ed) Neuroendocrine research methods, vol 2. Harwood, Chur, pp 487–498Google Scholar
  10. Wide L, Hobson BM (1983) Qualitative difference in follicle-stimulating hormone activity in the pituitaries of young women compared to that of men and elderly women. J Clin Endocrinol Metab 56:371–375Google Scholar
  11. YoungLai EV, Yie SM, Yeo J (1992) Development patterns of bioactive and immunoreactive FSH in the female rabbit: effects of ovarectomy. Eur J Obstet Gynecol Reprod Biol 46:45–49Google Scholar

Gonadotropin Inhibition

  1. Byrnes WW, Meyer RK (1951) The inhibition of gonadotrophic hormone secretion by physiological doses of estrogen. Endocrinology 48:133–136PubMedGoogle Scholar
  2. Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274Google Scholar

Inhibition of Gonadotropin Secretion in Intact Animals

  1. McGinty DA, Djerassi C (1958) Some chemical and biological properties of 19-nor-17α-ethinyltetosterone. Ann N Y Acad Sci 71:500–515PubMedGoogle Scholar
  2. Saunders FJ, Drill VA (1958) Some biological activities of 17-ethynyl and 17-alkyl derivatives of 17-hydroxyestrenones. Ann N Y Acad Sci 71:516–531PubMedGoogle Scholar
  3. Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274Google Scholar

Inhibition of Ovulation and Luteinization

  1. Austin CR, Bruce HM (1956) Effect of continuous oestrogen administration on oestrus, ovulation and fertilization in rats and mice. J Endocrinol 13:376–383PubMedGoogle Scholar
  2. Hahn DW, Allen GO, McGuire JL (1977) The pharmacological profile of norgestimate, a new orally active progestin. Contraception 16:541–553PubMedGoogle Scholar
  3. Hebborn P (1971) Progestional agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 105–119Google Scholar
  4. Junkmann K (1957) Long acting steroids in reproduction. Recent Prog Horm Res 13:389–427PubMedGoogle Scholar
  5. May M (1971) Anovulatory agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 101–104Google Scholar
  6. Phillips A, Hahn DW, Klimek S, McGuire JL (1987) A comparison of the potencies and activities of progestogens used in contraceptives. Contraception 36:181–192PubMedGoogle Scholar
  7. Sawyer CH (1952) Progesterone initially facilitates and later inhibits release of pituitary ovulating hormone in the rabbit. Fed Proc Fed Am Soc Exp Biol 11:138Google Scholar
  8. Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274Google Scholar
  9. Shipley EG (1965) Effectiveness of topical application of a number of progestins. Steroids 5:699–717Google Scholar
  10. Uilenbroek JTJ (1991) Hormone concentrations and ovulatory response in rats treated with antiprogestagens. J Endocrinol 129:423–429PubMedGoogle Scholar

Ovary–Spleen Transplantation

  1. Biskind MS, Biskind GS (1990) Development of tumors in the rat ovary after transplantation into the spleen. Historical milestone paper. Cancer J 3:113–116Google Scholar
  2. D’Albora H, Cassina MP, Barreiro JP, Sapiro R, Domínguez R (1992) Differences in follicular growth and ovulation ability in the autografted right and left ovary of hemiovarectomised prepubertal rats. Med Sci Res 20:755–757Google Scholar
  3. Desclin L (1959) Action du benzoate d’oestradiol et du propionate de testostérone sur la structure de l’ovaire implanté dans la rate. Ann Endocrinol (Paris) 20:222–227Google Scholar
  4. Mardones E, Iglesias R, Lipschutz A (1956) The antiluteinizing potency of five derivatives of progesterone. Endocrinology 58:212–219PubMedGoogle Scholar
  5. Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274Google Scholar

Inhibition of Fertility

  1. Dhar JD, Dwivedi A, Srivastava A, Setty BS (1994) Structure activity relationship of some 2,3-diaryl-2H-1-benzopyrans to their anti-implantation, estrogenic and antiestrogenic activities in the rat. Contraception 49:609–616PubMedGoogle Scholar
  2. Philibert D, Moguilewsky M, Mary I, Lecaque D, Tournemine C, Secchi J, Deraedt R (1985) Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal SJ (eds) The antiprogestin steroid RU 486 and human fertility control. Plenum, New York, pp 49–68Google Scholar
  3. Shipley EG (1962) Anti-gonadotropic steroids, inhibition of ovulation and mating. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 179–274Google Scholar

Prolactin

  1. Jacobs LS (1979) Prolactin. In: Jaffe BM, Behrmann HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 199–222Google Scholar
  2. Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651Google Scholar
  3. Leroy-Martin B, Peyrat JP, Amrani S, Lorthioir M, Leonardelli J (1995) Analyse immunocytochimique des recepteurs prolactiniques (R-PRL) humains a l’aide d’anticorps anti-idiotypes dans le cancers du sein humain. Ann Pathol 15:192–197PubMedGoogle Scholar
  4. Shiu RPC, Friesen HG (1976) Prolactin receptors. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 565–598Google Scholar
  5. Riddle O, Bates RW, Dykshorn SW (1933) The preparation, identification and assay of prolactin–a hormone of the anterior pituiarity. Am J Physiol 160:191–216Google Scholar

Radioimmunoassay of Rat Prolactin

  1. Jeffcoate SL, Bacon RRA, Beastall GH, Divers MJ, Franks S, Seth J (1986) Assays for prolactin: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem 23:638–651Google Scholar

Pigeon Crop Method

  1. Cowei AT, Forsyth IA (1935) Biology of prolactin. Pharmacol Ther 1:437–457Google Scholar
  2. Lyons WR, Page E (1935) Detection of mammatropin in the urine of lactating women. Proc Soc Exp Biol Med 32:1049–1050Google Scholar
  3. Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 237–260Google Scholar
  4. Riddle O, Bates RW (1939) Sex and internal secretions, 2nd edn. Williams and Wilkins, BaltimoreGoogle Scholar
  5. Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608Google Scholar

Lactation in Rabbits

  1. Bergman AJ, Meites J, Turner CM (1940) A comparison of methods of assay of the lactogenic hormone. Endocrinology 26:716–722Google Scholar
  2. Lyons WR (1942) The direct mammotropic action of lactogenic hormone. Proc Soc Exp Biol Med 51:308–311Google Scholar
  3. Lyons WR, Catchpole HR (1933) Availability of the rabbit for assay of the hypophyseal lactogenic hormone. Proc Soc Exp Biol Med 31:305–309Google Scholar
  4. Meites J, Turner CW (1950) Lactogenic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 237–260Google Scholar
  5. Segaloff A (1962) The gonadotropins. In: Dorfman RI (ed) Methods in hormone research, vol II, Bioassay. Academic, New York, pp 591–608Google Scholar

Growth Hormone (GH)

  1. Amit T, Ish-Shalom S, Glaser B, Youdim MBH, Hochberg Z (1992) Growth-hormone-binding protein in patients with acromegaly. Horm Res 37:205–211PubMedGoogle Scholar
  2. Chochinov RH, Daughaday WH (1978) Somatomedin A, Somatomedin C and NSILA-s. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 959–977Google Scholar
  3. Greenwood FC, Hunter WM, Glover JS (1963) The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123PubMedCentralPubMedGoogle Scholar
  4. Hofland LJ, van Koetsfeld PM, Verleun TM, Lamberts SWJ (1989) Glycoprotein alpha-subunit and prolactin release by cultured pituitary adenoma cells from acromegalic patients: correlation with GH release. Clin Endocrinol (Oxf) 30:601–611Google Scholar
  5. Hughes JP (1985) The nature and regulation of the receptors for pituitary growth hormone. Annu Rev Physiol 47:469–482PubMedGoogle Scholar
  6. Ilondo MM, Vanderschueren-Lodeweyckx M, DeMeyts P (1991) Measuring growth hormone activity through receptor and binding protein assays. Horm Res 36(Suppl 1):21–36PubMedGoogle Scholar
  7. Isaksson OGP, Edén S, Jansson JO (1985) Mode of action of pituitary growth hormone on target cells. Annu Rev Physiol 47:483–499PubMedGoogle Scholar
  8. Mertani HC, Pechoux C, Garcia-Caballero T, Waters MJ, Morel G (1995) Cellular localization of the growth hormone receptor/binding protein in the human anterior pituitary gland. J Clin Endocrinol Metab 80:3361–3367PubMedGoogle Scholar
  9. Peake GT, Morris J, Buckman MT (1978) Growth hormone. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 327–339Google Scholar
  10. Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39Google Scholar
  11. Rudd BT (1991) Growth, growth hormone and the somatomedins: a historical perspective and current concepts. Ann Clin Biochem 28:542–555PubMedGoogle Scholar
  12. Russell JA (1955) Methods of detection and assay of growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) The hypophyseal growth hormone, nature and actions. McGraw-Hill, New York, pp 17–27Google Scholar
  13. Strasburger CJ, Wu Z, Pflaum CD, Dressendorfer SA (1996) Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. J Clin Endocrinol Metab 81:2613–2620PubMedGoogle Scholar
  14. Wang BS, Lumanglas AL, Bona CA, Moran TM (1996) Functional characterization of monoclonal antibodies specific to growth hormone receptor. Mol Immunol 33:1197–1202PubMedGoogle Scholar

Weight Gain in Female Rats (“Growth Plateau Rats”)

  1. Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 273–290Google Scholar
  2. Groesbeck MD, Parlow AF (1987) Highly improved precision of the hypophysectomized female rat body weight gain bioassay for growth hormone by increased frequency of injections, avoidance of antibody formation, and other simple modifications. Endocrinology 120:2582–2590PubMedGoogle Scholar
  3. Li CH, Evans HM, Simpson ME (1945) Isolation and properties of the anterior pituitary growth hormone. J Biol Chem 159:353–366Google Scholar
  4. Marx W, Simpson ME, Evans HM (1942) Bioassay of the growth hormone of the anterior pituitary. Endocrinology 30:1–10Google Scholar
  5. Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704Google Scholar
  6. Roswell EC, Mukku VR, Chen AB, Hoff EH, Chu H, McKay PA, Olson KC, Battersby JE, Gehant RL, Meunier A, Garnick ER (1996) Novel assays based on human growth hormone receptor as alternatives to the rat weight gain bioassay for recombinant human growth hormone. Biologicals 24:25–39Google Scholar

Tibia Test in Hypophysectomized Rats

  1. Bentham J, Ohlsson C, Lindahl A, Isaksson O, Nilsson A (1993) A double-staining technique for detection of growth hormone and insulin-like growth factor-1 binding to rat tibial epiphyseal chondrocytes. J Endocrinol 137:361–367PubMedGoogle Scholar
  2. Geschwind II, Li CH (1955) The tibia test for growth hormone. In: Smith RW, Gaebler OH, Long CNH (eds) Hypophyseal growth hormone, nature and actions. McGraw-Hill, New York, pp 28–58Google Scholar
  3. Greenspan FS, Li CH, Simpson ME, Evans HM (1949) Bioassay of hypophyseal growth hormone: the tibia test. Endocrinology 45:455–463PubMedGoogle Scholar
  4. Greenspan FS, Li CH, Simpson ME, Evans HM (1950) Growth hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 273–290Google Scholar
  5. Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704Google Scholar

35S Uptake

  1. Collins EJ, Baker VF (1960) Growth hormone and radiosulfate incorporation: I. A new assay method for growth hormone. Metabolism 9:556–560PubMedGoogle Scholar
  2. Papkoff H, Li CH (1962) Hypophyseal growth hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 671–704Google Scholar

Inhibition of Glucose Uptake in Adipocytes in Vitro

  1. Dole V, Meinertz J (1969) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599Google Scholar
  2. Foster CM, Borondy M, Padmanabhan V, Schwartz J, Kletter GB, Hopwood NJ, Beitins IZ (1993) Bioactivity of human growth hormone in serum: validation of an in vitro bioassay. Endocrinology 132:2073–2082PubMedGoogle Scholar
  3. Xu BC, Chen WY, Gu T, Ridgway D, Wiehl P, Okada S, Kopchick JJ (1995) Effects of growth hormone antagonists on 3T3-F422A preadipocyte differentiation. J Endocrinol 146:131–139PubMedGoogle Scholar

Eluted Stain Bioassay for Human Growth Hormone

  1. Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Weir T, Marshall NJ (1993) Enhancement of growth hormone bioactivity by zinc in the eluted stain assay system. Endocrinology 1993:2803–2808Google Scholar
  2. Dattani MT, Hindmarsh PC, Brook CGD, Robinson ICAF, Kopchick JJ, Marshall NJ (1995) G120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells. J Biol Chem 270:9222–9226PubMedGoogle Scholar
  3. Ealey PA, Yateman ME, Holt SJ, Marshall NJ (1988) ESTA: a bioassay system for the determination of potencies of hormones and antibodies which mimic their action. J Mol Endocrinol 1:R1–R4PubMedGoogle Scholar
  4. Ealey PA, Yateman ME, Sandhu R, Dattani MD, Hassan MK, Holt SJ, Marshall NJ (1995) The development of an eluted stain bioassay (ESTA) for human growth hormone. Growth Regul 5:36–44PubMedGoogle Scholar
  5. Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11Google Scholar

Reverse Hemolytic Plaque Assay for Growth Hormone

  1. Luque EH, Munoz de Toro M, Smith POF, Neill JD (1986) Subpopulations of lactotropes detected with the reverse hemolytic plaque assay show different responsiveness to dopamine. Endocrinology 118:2120–2124PubMedGoogle Scholar
  2. Neill JD, Frawley S (1983) Detection of hormone release from individual cells in mixed populations using a reverse hemolytic plaque assay. Endocrinology 112:1135–1137PubMedGoogle Scholar
  3. Niimi M, Sato M, Murao K, Takahara J, Kawanishi K (1994a) Effect of excitatory amino acid receptor agonists on secretion of growth hormone as assessed by the reverse hemolytic plaque assay. Neuroendocrinology 60:173–178PubMedGoogle Scholar
  4. Niimi M, Sato M, Wada Y, Tamaki M, Takahara J, Kawanishi K (1994b) Analysis of growth hormone release from rat anterior pituitary cells by reverse hemolytic plaque assay: influence of interleukin-1. Life Sci 55:1807–1913PubMedGoogle Scholar
  5. Smith PF, Luque EH, Neill JD (1986) Detection and measurement of secretion from individual neuroendocrine cells using a reverse hemolytic plaque assay. In: Conn PM (ed) Methods in enzymology, vol 124. Academic, New York, pp 443–464Google Scholar

Determination of Growth Hormone Isoforms by 22-kDa GH Exclusion Assay

  1. Boguszewski CL, Hynsjö L, Johannsson G, Bengtsson BÅ, Carlsson LMS (1996) 22-kDa growth hormone exclusion assay: a new approach to measurement of non-22 kDa growth hormone isoforms in human blood. Eur J Endocrinol 135:573–582PubMedGoogle Scholar
  2. Strasburger CJ, Dattani MT (1997) New growth hormone assays: potential benefits. Acta Pediatr Suppl 412:5–11Google Scholar

Steroid Regulation of Growth Hormone Receptor and GH-Binding Protein

  1. Carmignac D, Well T, Carlsson L, Clark RG, Robinson ICAF (1992) Growth hormone (GH)-binding protein in normal and GH-deficient dwarf rats. J Endocrinol 135:447–457PubMedGoogle Scholar
  2. Carmignac D, Gabrielsson BG, Robinson ICAF (1993) Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 133:2445–2452PubMedGoogle Scholar
  3. Chomczynski P, Saachi N (1987) Single step method for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedGoogle Scholar
  4. Gabrielsson BG, Carmignac DF, Flavell DM, Robinson ICAF (1995) Steroid regulation of growth hormone (GH) receptor and GH-binding protein messenger ribonucleic acids in the rat. Endocrinology 136:209–217PubMedGoogle Scholar
  5. Martini JF, Villares SM, Nagano M, Delehaye-Zervas MC, Eymard B, Kelly PA, Postel-Vinay MC (1995) Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle. Endocrinology 136:1355–1360PubMedGoogle Scholar
  6. Möller C, Arner P, Sonnenfeld T, Norstedt G (1991) Quantitative comparison of insulin-like growth factor mRNA levels in human and rat tissues analyzed by a solution hybridization assay. J Mol Endocrinol 7:213–222PubMedGoogle Scholar
  7. Nilsson A, Swolin D, Enerback S, Ohlsson C (1995) Expression of functional growth hormone receptors in cultured human osteoblast-like cells. J Clin Endocrinol Metab 80:3483–3488PubMedGoogle Scholar

Adrenocorticotropin (ACTH)

  1. Bangham DR, National Institute for Medical Research, London (1962) The third international standard for corticotropin and an international working standard for corticotropin. Acta Endocrinol 40:552–554Google Scholar
  2. British Pharmacopoeia (1988) vol II. HMSO, London, pp A166–167Google Scholar
  3. Chayen J, Daly JR, Loveridge N, Bitensky L (1976) The cytochemical bioassay of hormones. Recent Prog Horm Res 32:33–79PubMedGoogle Scholar
  4. Deutsches Arzneibuch (1986) 9. Ausgabe, V.2.2.2. Deutscher Apotheker, Stuttgart, p 49Google Scholar
  5. Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669Google Scholar
  6. Geiger R, Sturm K, Vogel G, Siedel W (1964) Synthetische Analoge des Corticotropins. Zur Bedeutung der aminoterminalen Sequenz Ser-Tyr-Ser für die adrenocorticotrope Wirkung. Z Naturforsch 19b:858–860Google Scholar
  7. Inouye K, Otsuka H (1987) ACTH: structure–function relationship. In: Li CH (ed) Hormonal proteins and peptides, vol XIII. Academic, New York, pp 1–29Google Scholar
  8. Rerup C (1957) The subcutaneous assay of corticotrophin A. Acta Endocrinol 25:17–32PubMedGoogle Scholar
  9. Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310Google Scholar
  10. Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbinic acid. J Biol Chem 147:399–407Google Scholar
  11. Sayers MA, Sayers G, Woodbury LA (1948) The assay of adreno-corticotropic hormone by the adrenal ascorbic acid-depletion method. Endocrinology 42:379–393PubMedGoogle Scholar
  12. Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030Google Scholar
  13. The United State Pharmacopeia USP 23 (1995) Corticotropin injection. The United States Pharmacopeial Convention, Rockville, pp 426–428Google Scholar
  14. Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34Google Scholar
  15. Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24Google Scholar
  16. Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27Google Scholar

Corticosterone Blood Levels in Dexamethasone-Blocked Rats

  1. Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669Google Scholar
  2. Pekkarinen A (1965) Bioassay of corticotrophin preparations with the international working standard on living guinea pigs. Acta Endocrinol Suppl 100:35Google Scholar
  3. Retiene K, Ditschuneit H, Fischer M, Kopp K, Pfeiffer EF (1962) Corticotropin-Bestimmung anhand des Corticosteron-Anstieges im Nebennieren-Venenblut hypophysektomierter Ratten. Vergleich von Dexamethasonblockade und Hypophysektomie. Acta Endocrinol 41:211–218Google Scholar
  4. Sandow J, Geiger R, Vogel HG (1977) Pharmacological effects of a short chain ACTH-analogue. Naunyn-Schmiedebergs Arch Pharmacol 297:162Google Scholar
  5. Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030Google Scholar
  6. Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocrinol 50:55–64Google Scholar
  7. Vogel HG (1965) Evaluation of synthetic peptides with ACTH-activity. Acta Endocrinol Suppl 100:34Google Scholar
  8. Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24Google Scholar
  9. Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27Google Scholar

In Vitro Corticosteroid Release

  1. Allen WM (1950) A simple method for analyzing complicated absorption curves, of use in the colorimetric determination of urinary steroids. J Clin Endocrinol 10:71–83Google Scholar
  2. Bangham DR, Musset MV, Stack-Dunne MP (1962) The third international standard for corticotrophin and an international working standard for corticotrophin. Acta Endocrinol 40:552–554Google Scholar
  3. Buckingham JC, Cover PO, Gillies GE (1991) Biological and radioimmunometric assay methods for the determination of corticotrophin. In: Greenstein B (ed) Neuroendocrine research methods, vol 2. Harwood, Chur, pp 601–613Google Scholar
  4. der Vies V (1957) Experience with an assay of adrenocorticotropic hormone based on the steroid output of rat adrenals in vitro. Acta Physiol Pharmacol Neerl 5:361–384Google Scholar
  5. Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669Google Scholar
  6. Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310Google Scholar
  7. Saffran M, Schally AV (1955) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:512–532Google Scholar
  8. Saffran M, Matthews EK, Pearlmutter F (1971) Analysis of the response to ACTH by rat adrenal in a flowing system. Recent Prog Horm Res 27:607–630PubMedGoogle Scholar
  9. Schuler W, Schär B, Desaulles P (1963) Zur Pharmakologie eines ACTH-wirksamen, vollsynthetischen Polypeptids, des β 124-Corticotropins, Ciba 30920-Ba, Synacthen. Schweiz Med Wschr 93:1027–1030Google Scholar
  10. Staehelin M, Barthe P, Desaulles P (1965) On the mechanism of the adrenal gland response to adrenocorticotropic hormone in hypophysectomized rats. Acta Endocrinol 50:55–64Google Scholar
  11. Tesser GI, Schwyzer R (1966) Synthese des 17,18-Diornithin-β-corticotropin-(1–24)-tetracosapeptides, eines biologisch aktiven Analogons des adrenocorticotropen Hormones. Helvet Chim Acta 49:1013–1022PubMedGoogle Scholar
  12. Vogel HG (1969a) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. A: Vergleich mit dem III. Internationalen Standard für Corticotropin. Arzneimittelforschung 19:20–24Google Scholar
  13. Vogel HG (1969b) Tierexperimentelle Untersuchungen über synthetische Peptide mit Corticotropinaktivität. B: Prüfung einer Depot-Zubereitung von β1–23-Corticotropin-23-amidacetat. Arzneimittelforschung 19:25–27Google Scholar

Thymus Involution

  1. Fisher JD (1962) Adrenocorticotropin. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 641–669Google Scholar
  2. Hayashida T, Li CH (1952) Enhancement of adrenocorticotropic hormone activity by alum in normal 21-day old rats. Endocrinology 50:187–191PubMedGoogle Scholar
  3. Hohlweg W, Laschet U, Dörner G, Daume E (1960) Der NTQ-Test, eine einfache Testierungsmethode für Corticotropin- und Depot-Corticotropin-Präparate. Acta Endocrinol 35:501–507PubMedGoogle Scholar
  4. Rerup C (1958) The subcutaneous assay of corticotrophin A. II. The replacement of gelatine by saline. Acta Endocrinol 28:300–310Google Scholar
  5. Thing E (1953) The thymus involution test for ACTH. Acta Endocrinol 13:343–352PubMedGoogle Scholar
  6. Thompson RE, Fisher JD (1953) Correlation of preparative history and method of assay of corticotropin with clinical potency. Endocrinology 52:496–509PubMedGoogle Scholar

Receptor Binding Assay for ACTH

  1. Kapas S, Cammas FM, Hinson JP, Clark AJL (1996) Agonistic and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology 137:32901–33294Google Scholar
  2. Lebrethon MC, Naville D, Begeot M, Saez JM (1994) Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II. J Clin Invest 93:1828–1833PubMedCentralPubMedGoogle Scholar
  3. Munson PJ, Rodbard D (1980) Ligand, a versatile computerised approach for characterization of ligand binding systems. Anal Biochem 107:220–239PubMedGoogle Scholar
  4. Naville D, Penhoat A, Barjhoux L, Jaillard C, Fontanay S, Saez J, Durand P, Begeot M (1996) Characterization of the human ACTH receptor gene and in vitro expression. Endocr Res 22:337–348PubMedGoogle Scholar
  5. Naville D, Barjhoux L, Jaillard C, Saez JM, Durand P, Begeot M (1997) Stable expression of normal and mutant human ACTH receptor. Study of ACTH binding and coupling to adenylate cyclase. Mol Cell Endocrinol 129:83–90PubMedGoogle Scholar
  6. Penhoat A, Jaillard C, Saez M (1993) Identification and characterization of corticotropin receptors in bovine and human adrenals. J Steroid Biochem Mol Biol 44:21–27PubMedGoogle Scholar
  7. Penhoat A, Lebrethon MC, Begeot M, Saez JM (1995) Regulation of ACTH receptor mRNA and binding sites by ACTH and angiotensin II in cultured human and bovine adrenal fasciculata cells. Endocr Res 21:157–168PubMedGoogle Scholar
  8. Picard-Hagen N, Penhoat A, Hue D, Jaillard C, Durand P (1997) Glucocorticoids enhance corticotropin receptor mRNA levels in ovine adrenocortical cells. J Mol Endocrinol 19:29–36PubMedGoogle Scholar
  9. Schioth HB, Chhajlani V, Muceniece R, Klusa V, Wikberg JES (1996) Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci 59:797–801PubMedGoogle Scholar
  10. Schioth HB, Muceniece R, Larsson M, Wikberg JES (1997) The melanocortin 1, 3, 4 or 5 receptors do not have a binding epitope for ACTH beyond the sequence of alpha-MSH. J Endocrinol 155:73–78PubMedGoogle Scholar
  11. Zavyalov VP, Maiorov VA, Safonova NG, Navolotskaya EV, Volodina EY, Abromov VM (1995) Receptor binding properties of the peptides corresponding to the ACTH-like sequence of human pro-Interleukin-1α. Immunol Lett 46:125–128Google Scholar

Thyrotropin (TSH)

  1. Bockmann J, Winter C, Wittkowski W, Kreutz MR, Böckers TM (1997) Cloning and expression of a brain-derived TSH receptor. Biochem Biophys Res Commun 238:173–1780PubMedGoogle Scholar
  2. Castagiola A, Swillens S, Niccoli P, Dumont JE, Vassart G, Ludgate M (1992) Binding assay for thyrotropin receptor autoantibodies using the recombinant receptor protein. J Clin Endocrinol Metab 75:1540–1544Google Scholar
  3. Cole ES, Lee K, Lauziere K et al (1993) Recombinant human thyroid stimulating hormone: development of a biotechnology product for detection of metastatic lesions of thyroid carcinoma. Biotechnology 11:1014–1024PubMedGoogle Scholar
  4. Hussain A, Zimmerman CA, Boose JA, Froulich J, Richardson A, Horowitz RS, Collins MT, Lash RW (1996) Large scale synthesis of recombinant human thyrotropin using methotrexate amplification: chromatographic, immunological, and biological characterization. J Clin Endocrinol Metab 81:1184–1188PubMedGoogle Scholar
  5. Meinhold H, Altmann R, Bogner U, Finke R, Schleusener H (1994) Evaluation of various immunometric TSH assays. Exp Clin Endocrinol 102:23–26Google Scholar
  6. Oda Y, Sanders J, Roberts S, Maruyama M, Kato R, Perez M, Petersen VB, Wedlock N, Furmaniak J, Smith RB (1998) Binding characteristics of antibodies to the TSH receptor. J Mol Endocrinol 20:233–244PubMedGoogle Scholar
  7. Spencer CE (1994) Further developments in TSH technology. Exp Clin Endocrinol 102:12–22Google Scholar
  8. Utiger RD (1979) Thyrotropin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 315–325Google Scholar
  9. Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:569–611Google Scholar

Thyroid Histology

  1. Jones MS (1939) A study of thyrotropic hormone in clinical states. Endocrinology 24:665–671Google Scholar
  2. Junkmann K, Schoeller W (1932) Über das thyreotrope Hormon des Hypophysenvorderlappens. Klin Wschr 11:1176–1177Google Scholar
  3. McGinty DA, McCullough NB (1936) Thyrotropic hormone in non-pituitary tissue. Proc Soc Exp Biol Med 35:24–26Google Scholar
  4. Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 215–235Google Scholar
  5. Turner CW (1969) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 515–565Google Scholar

Iodine Uptake

  1. Bates RW, Cornfield J (1957) An improved assay method for thyrotropin using depletion of I131 from the thyroid of day-old chicks. Endocrinology 60:225–238PubMedGoogle Scholar
  2. McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382Google Scholar
  3. Sakiz E, Guillemin R (1964) On a method for calculation and analysis of results in the McKenzie assay for thyrotropin. Proc Soc Exp Biol Med 115:856–860PubMedGoogle Scholar
  4. Turner CW (1950) Thyrotropic hormone. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 215–235Google Scholar
  5. Turner CW (1962) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 617–639Google Scholar
  6. Turner CW (1969) Thyrotropic hormone. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 515–565Google Scholar

TSH Bioassay Based on cAMP Accumulation in CHO Cells

  1. Horimoto M, Nishikawa M, Yoshikawa N, Inada N (1989) A sensitive and practical bioassay for thyrotropin using cultured FRTL-5 cells: assessment of bioactivity for serum TSH in patients with chronic renal failure. Acta Endocrinol 121:191–196PubMedGoogle Scholar
  2. Nissim M, Lee KO, Petrick PA, Dahlberg PA, Weintraub BD (1987) A sensitive thyrotropin (TSH) bioassay on iodide uptake in rat FRTL-5 thyroid cells: comparison with the adenosine 3′,5′-monophosphate response to human serum TSH and enzymatically deglycosylated bovine and human TSH. Endocrinology 121:1278–1287PubMedGoogle Scholar
  3. Persani L, Tonacchera M, Beck-Peccoz P, Vitti P, Mammoli C, Chiovato L, Elisei R, Faglia G, Ludgate M, Vassart G, Pinchera A (1993) Measurement of cAMP accumulation on Chinese hamster ovary cells transfected with the recombinant human TSH receptor (CHO-R): a new bioassay for human thyrotropin. J Endocrinol Invest 16:511–519PubMedGoogle Scholar
  4. Vitti P, Chiovato L, Ceccarelli P, Lombardi A, Novaes M Jr, Fenci GF, Pinchera A (1986) Thyroid-stimulating antibody mimics thyrotropin in its ability to desensitize the adenosine 3′,5′-monophosphate response to acute stimulation in continuously cultured rat thyroid cells (FRT-L5). J Clin Endocrinol Metab 63:454–458PubMedGoogle Scholar

Hormones Related to TSH

  1. De Felice M, Postiglione MP, Di Lauro R (2004) Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 145(9):4027–4062Google Scholar
  2. Di Cerbo A, Corda D (1999) Signaling pathways involved in thyroid hyperfunction and growth in Graves’ disease. Biochimie 81(5):415–424PubMedGoogle Scholar
  3. Dobyns BM, Steelman SL (1953) The thyroid stimulating hormone of the anterior pituitary as distinct from the exophthalmos producing substance. Endocrinology 52:705–711Google Scholar
  4. Ludgate M (1999) Animal model of thyroid-associated orbitopathy. Exp Clin Endocrinol Diabetes 107(Suppl 5):S158–S159PubMedGoogle Scholar

Assay of Exophthalmos-Producing Substance (EPS) in Fishes

  1. Albert A (1945) The biochemistry of the thyrotropic hormone. Ann N Y Acad Sci 50:466–490Google Scholar
  2. Brunish R, Hayashi K, Hayashi J (1962) Purification and properties of exophthalmos-producing substance. Arch Biochem Biophys 98:135–141PubMedGoogle Scholar
  3. der Kinderen PJ, Houtstra-Lanz M, Schwarz F (1960) Exophthalmos-producing substance in human serum. J Clin Endocrinol Metab 20:712–718Google Scholar
  4. Dobyns BM, Steelman SL (1953) The thyroid stimulating hormone of the anterior pituitary as distinct from the exophthalmos producing substance. Endocrinology 52:705–711Google Scholar
  5. Haynie TP, Winzler RJ, Matovinovic J, Carr EA Jr, Beierwaltes WH (1962) Thyroid-stimulating and exophthalmos-producing activity of biochemically altered thyrotropin. Endocrinology 71:782–789PubMedGoogle Scholar
  6. Sobonya RE, Dobyns BM (1967) Comparisons of the responses of native Ohio fish and two species of salt-water Fundulus to the exophthalmos-producing substance (EPS) of the pituitary gland. Endocrinology 80:1090–1096PubMedGoogle Scholar

Assay of Long-Acting Thyroid-Stimulating Factor (LATS) in Mice

  1. Adams DD (1958) The presence of an abnormal thyroid-stimulating hormone in the serum of some thyrotoxic patients. J Clin Endocrinol Metab 18:699–712PubMedGoogle Scholar
  2. Ealey PA, Marshall NJ, Ekins RP (1984) Further studies on the response of a cytochemical bioassay to thyroid stimulators, using reference preparations of thyrotropin and long acting thyroid stimulator. J Endocrinol Invest 7:25–28PubMedGoogle Scholar
  3. Ealey PA, Valente WA, Ekins RP, Kohn LD, Marshall NJ (1985) Characterization of monoclonal antibodies raised against solubilized thyrotropin receptors in a cytochemical bioassay for thyroid stimulators. Endocrinology 116:124–131PubMedGoogle Scholar
  4. Ikeda H, Nagataki S (1983) Lack of refractoriness to stimulation with long acting thyroid stimulator of thyroid hormone synthesis and thyroid hormone secretion in mice in vivo. Acta Endocrinol 102:392–395PubMedGoogle Scholar
  5. Ikeda H, Chiu SC, Kuzuya N, Uchimura H, Nagataki S (1984) Effects of in vivo triiodothyronine and long acting thyroid stimulator (LATS) administration on the in vitro thyroid cAMP response to thyrotrophin and LATS. Acta Endocrinol 106:193–198PubMedGoogle Scholar
  6. McKenzie JM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382Google Scholar

Posterior Pituitary Hormones

  1. Allison NL, Albrightson-Winslow CR, Brooks DP, Stassen FL, Huffman WF, Stote RM, Kinter LB (1987) Species heterogeneity and antidiuretic activity of hormone antagonists: what are the predictors? In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 207–214Google Scholar
  2. Bell IM, Erb JM, Freidinger RM, Gallicchio SN, Guare JP, Guidotti MT, Halpin RA, Hobbs DW, Homnick CF, Kuo MS, Lis EV, Mathre DJ, Michelson SR, Pawluczyk JM, Pettibone DJ, Reiss DR, Vickers S, Williams PD, Woyden CJ (1998) Development of orally active oxytocin antagonists: studies on 1-(1-(4-[1-(2-methyl-1-oxidopyridin-3-ylmethyl)piperidin-4-yloxy]-2-methoxybenzoyl)-4-yl)-1,4-dihydrobenz[d][1,3]oxazin-2-one (L-372,662) and related pyridines. J Med Chem 41:2146–2163PubMedGoogle Scholar
  3. Burnatowska-Hledin MA, Spielman WS (1989) Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. J Clin Invest 83:84–89PubMedCentralPubMedGoogle Scholar
  4. Chan WY, Wo NC, Stoev ST, Cheng LL, Manning M (2000) Discovery and design of novel and selective vasopressin and oxytocin agonists and antagonists: the role of bioassays. Exp Physiol 85(Spec No):7S–18SPubMedGoogle Scholar
  5. Dale H, Laidlaw J (1912) A method for standardising pituitary (infundibular) extracts. J Pharmacol Exp Ther 4:73–95Google Scholar
  6. Fahrenholz F, Kojro E, Jans D (1988) Renal and hepatic vasopressin receptor proteins: identification and strategies for purification. In: Cowley AW Jr, Liard JF, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven, New York, pp 27–32Google Scholar
  7. Fromherz K (1926) Bemerkungen zur Auswertung von Hypophysenextrakt am Meerschweinchenuterus. Naunyn-Schmiedebergs Arch Exp Path Pharmakol 113:113–123Google Scholar
  8. Gash DM, Herman JP, Thomas GJ (1987) Vasopressin and animal behavior. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 517–547Google Scholar
  9. Glick SM, Kagan A (1978) Vasopressin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 341–351Google Scholar
  10. Greenberg A, Verbalis JG (2006) Vasopressin receptor antagonists. Kidney Int 69(12):21–30Google Scholar
  11. Hedge GA, Huffman LJ (1987) Vasopressin and endocrine function. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 435–475Google Scholar
  12. Hogben LT, Schlapp W (1924) Studies on the pituitary. III. The vasomotor activity of pituitary extracts throughout the vertebrate series. Q J Exp Physiol 14:229–258Google Scholar
  13. Hogben LT, Schlapp W, Macdonald AD (1924) Studies on the pituitary IV. Quantitative comparison of pressor activity. Q J Exp Physiol 14:301–318Google Scholar
  14. Hruby VJ, Chow MS (1990) Conformational and structural considerations in oxytocin-receptor binding and biological activity. Annu Rev Pharmacol Toxicol 30:501–534PubMedGoogle Scholar
  15. Jard S, Bockaert J, Rajerison R (1976) Vasopressin receptors. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 667–703Google Scholar
  16. Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177PubMedGoogle Scholar
  17. Kagan A, Glick SM (1978) Oxytocin. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay. Academic, New York, pp 327–339Google Scholar
  18. Kuo MS, Bock MG, Freidinger RM, Guidfotti MT, Lis EV, Pawluczyk JM, Perlow DS, Pettibone DJ, Quigley AG, Reiss DR, Williams PD, Woyden CJ (1998) Nonpeptide oxytocin antagonists: potent, bioavailable analogs of L-371,257 containing A 1-R-(pyridyl)ethyl ether terminus. Bioorg Med Chem Lett 8:3081–3086PubMedGoogle Scholar
  19. Liard JF (1988) Vasopressin antagonists and their use in animal studies. Kidney Int Suppl 26:S43–S47PubMedGoogle Scholar
  20. Mah SC, Hofbauer KG (1987) Pharmacological studies with the vasopressin (V2) antagonist d(CH2)5-d-Tyr(Et)V AVP: acute and chronic effects in Sprague–Dawley and Brattleboro rats. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 201–206Google Scholar
  21. Manning M, Bankowski K, Sawyer WH (1987) Selective agonists and antagonists of vasopressin. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum, New York, pp 335–368Google Scholar
  22. Mayinger B, Hensen J (1999) Nonpeptide vasopressin antagonists: a new group of hormone blockers entering the scene. Exp Clin Endocrinol Diabetes 107(3):157–165PubMedGoogle Scholar
  23. Serradeil-Le Gal C, Wagnon J, Valette G, Garcia G, Pascal M, Maffrand JP, Le Fur G (2002) Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. Prog Brain Res 139:197–210PubMedGoogle Scholar
  24. Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. Handbuch exper Pharmakol, vol 3. Springer, Berlin/Heidelberg/New York, pp 61–150Google Scholar
  25. Soloff MS (1976) Oxytocin receptors in the mammary gland and uterus. In: Blecher M (ed) Methods in receptor research. Part II. Dekker, New York, pp 511–531Google Scholar
  26. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13PubMedGoogle Scholar
  27. Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421PubMedGoogle Scholar
  28. Walker BR, Childs ME, Adams EM (1988) Direct cardiac effects of vasopressin: role of V1- and V2-vasopressinergic receptors. Am J Physiol 255:H261–H265PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre of PharmacologyFrankfurt-Main UniversityGlashuettenGermany

Personalised recommendations