Methods to Induce Experimental Diabetes Mellitus

Living reference work entry

Abstract

Dysfunction of the visceral tract has been considered for a long time to be the cause of diabetes mellitus. Bomskov in 1910 reported severe diabetic symptoms in dogs after cannulation of the ductus lymphaticus. This observation, however, could not be confirmed in later experiments (Vogel HG (1963), Unpublished data). The technique was similar to that described by Gryaznova (1962, 1963) for ligation of the thoracic duct in dogs.

Keywords

Alloxan Diabetes Encephalomyocarditis Virus Diltiazem Hydrochloride Diabetogenic Action Gold Thioglucose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Pancreatectomy in Dogs

  1. Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:251–266Google Scholar
  2. Beyer J, Schöffling K (1968) Die Houssay-Präparation (Methodisches Vorgehen und Auswirkungen der Versuchsanordnung auf Stoffwechsel und endokrines System). In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, München, pp 745–761Google Scholar
  3. Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 71:1544–1553CrossRefPubMedCentralPubMedGoogle Scholar
  4. Foà PP (1971) Pankreatektomie. In: Dörzbach E (ed) Handbook of experimental pharmacology, vol 32/1. Insulin/Springer, Berlin/Heidelberg/New York, pp 146–158Google Scholar
  5. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  6. Greeley PO (1937) Pancreatic diabetes in the rabbit. Proc Soc Exp Biol 37:390CrossRefGoogle Scholar
  7. Gryaznova AV (1962) Ligation of the thoracic duct in dogs. Arkh Anat Gistol Embriol 42:90–95Google Scholar
  8. Gryaznova AV (1963) Ligation of the thoracic duct in dogs. Fed Proc 22/II,T886Google Scholar
  9. Houssay BA (1930) Le diabète pancréatique des chiens hypophysectomisés. Les troubles diabétiques chez les chiens privés d’hypophyse et de pancréas. C R Soc Biol Paris 105:121–126Google Scholar
  10. Houssay BA, Biasotti A (1931) Pankreasdiabetes und Hypophyse am Hund. Pflüger’s Arch ges Physiol 227:664–685CrossRefGoogle Scholar
  11. Itoh A, Maki T (1996) Protection of nonobese diabetic mice from autoimmune diabetes by reduction of islet mass before insulitis. Proc Natl Acad Sci 93:11053–11056CrossRefPubMedCentralPubMedGoogle Scholar
  12. Lau TS, McMillan N, Cherrington A, Lo S, Drucker WR, Koven IH (1976) Insulin metabolism in depancreatized dogs during hemorrhagic shock. J Surg Oncol 8:49–52CrossRefPubMedGoogle Scholar
  13. von Mehring J, Minkowski O (1890) Diabetes mellitus nach Pankreasexstirpation. Arch Exp Pathol Pharmakol 26:371–387CrossRefGoogle Scholar
  14. Noguchi Y, Younes RN, Konlon KC, Vydelingum NA, Matsumoto A, Brennan MF (1994) The effect of prolonged hyperglycemia on metabolic alterations in the subtotally pancreatectomized rat. Surg Today Jpn J Surg 24:987–994CrossRefGoogle Scholar
  15. Rappaport AM, Vranic M, Wrenshall GA (1966) A pedunculated subcutaneous autotransplant of an isolated pancreas remnant for the temporary deprivation of internal secretion in the dog. Surgery 59:792–798PubMedGoogle Scholar
  16. Scow RO (1957) “Total” pancreatectomy in the rat: operation, effects and post-operative care. Endocrinology 60:359–367CrossRefPubMedGoogle Scholar
  17. Scow RO, Wagner EM, Cardeza A (1957) Effect of hypophysectomy on the insulin requirement and response to fasting of “totally” pancreatectomized rats. Endocrinology 61:380–391CrossRefPubMedGoogle Scholar
  18. Sirek A (1968) Pancreatectomy and diabetes. In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, Munchen, pp 727–743Google Scholar
  19. Tanigawa K, Nakamura S, Kawaguchi M, Xu G, Kin S, Tamura K (1997) Effect of aging on B-cell function and replication in rat pancreas after 90 % pancreatectomy. Pancreas 15:53–59CrossRefPubMedGoogle Scholar
  20. Wagner EM, Cardeza A (1957) Effect of hypophysectomy on the insulin requirement and response to fasting of totally pancreatectomized rats. Endocrinology 61:380–388CrossRefPubMedGoogle Scholar

Alloxan-Induced Diabetes

  1. Baily CC, Baily OT (1943) Production of diabetes mellitus in rabbits with alloxan. A preliminary report. J Am Med Assoc 122:1165–1166CrossRefGoogle Scholar
  2. Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372Google Scholar
  3. Blum F, Schmid R (1954) Über den Einfluss der Konzentration auf den Ablauf des experimentellen Alloxandiabetes. Helv Phys Acta 12:181–183Google Scholar
  4. Brunschwig A, Allen JG, Goldner MG, Gomori G (1943) Alloxan. J Am Med Assoc 122:966CrossRefGoogle Scholar
  5. Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet II:384–387CrossRefGoogle Scholar
  6. Frerichs H, Creutzfeldt W (1968) Diabetes durch beta-zytotoxine. In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, München, pp 811–840Google Scholar
  7. Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische diabetes. In: Dörzbach E (ed) Handbook of experimental pharmacology, vol 32/1. Insulin/Springer, Berlin/Heidelberg/New York, pp 159–202Google Scholar
  8. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  9. Goldner MG, Gomori G (1944) Studies on the mechanism of alloxan diabetes. Endocrinology 35:241–248CrossRefGoogle Scholar
  10. Heikkila RE, Barden H, Cohen G (1974) Prevention of alloxaninduced diabetes by ethanol administration. J Pharmacol Exp Ther 190:501–506PubMedGoogle Scholar
  11. Katsumata K, Katsumata Y (1990) Effect of single administration of tolbutamide on the occurrence of alloxan diabetes in rats. Horm Metab Res 22:192–193CrossRefPubMedGoogle Scholar
  12. Katsumata K, Katsumata Y, Ozawa T, Katsumata K Jr (1993) Potentiating effect of combined usage of three sulfonylurea drugs on the occurrence of alloxan diabetes in rats. Horm Metab Res 25:125–126CrossRefPubMedGoogle Scholar
  13. Kodoma T, Iwase M, Nunoi K, Maki Y, Yoshinari M, Fujishima M (1993) A new diabetes model induced by neonatal alloxan treatment in rats. Diabetes Res Clin Pract 20:183–189CrossRefGoogle Scholar
  14. Pincus IJ, Hurwitz JJ, Scott ME (1954) Effect of rate of injection of alloxan on development of diabetes in rabbits. Proc Soc Exp Biol Med 86:553–558CrossRefPubMedGoogle Scholar
  15. Tasaka Y, Inoue Y, Matsumoto H, Hirata Y (1988) Changes in plasma glucagon, pancreatic polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol Jpn 35:399–404CrossRefPubMedGoogle Scholar

Streptozotocin-Induced Diabetes

  1. Bleich D, Chen S, Zipser B, Sun D, Funk CD, Nadler JL (1999) Resistance to tpye1 diabetes induction in 12-lipoxygenase knockout mice. J Clin Invest 103:1431–1436CrossRefPubMedCentralPubMedGoogle Scholar
  2. Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische diabetes. In: Dörzbach E (ed) Handbook of experimental pharmacology, vol 32/1. Insulin/Springer, Berlin/Heidelberg/New York, pp 159–202Google Scholar
  3. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  4. Grussner R, Nakleh R, Grussner A, Tomadze G, Diem P, Sutherland D (1993) Streptozotocin-induced diabetes mellitus in pigs. Horm Metab Res 25:199–203CrossRefPubMedGoogle Scholar
  5. Iwakiri R, Nagafuchi S, Kounoue E, Nakano S, Koga T, Nakayama M, Nakamura M, Niho Y (1987) Cyclosporin A enhances streptozotocin induced diabetes in CD-1 mice. Experientia 43:324–327CrossRefPubMedGoogle Scholar
  6. Katsumata K, Katsumata K Jr, Katsumata Y (1992) Protective effect of diltiazem hydrochloride on the occurrence of alloxan- or streptozotocin-induced diabetes in rats. Horm Metab Res 24:508–510CrossRefPubMedGoogle Scholar
  7. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: a new model of diabetes mellitus. Science 193:415–417CrossRefPubMedGoogle Scholar
  8. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K-I, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1998) Poly(ADP-ribose)polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96:2301–2304CrossRefGoogle Scholar
  9. Miller DL (1990) Experimental diabetes: effect of streptozotocin on the golden Syrian hamster. Lab Anim Sci 40:539–540PubMedGoogle Scholar
  10. Rakieten N, Rakieten ML, Nadkarni MV (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep 29:91–102Google Scholar
  11. Rossini AA, Like AA, Chick A, Appel MC, Cahill GF (1977) Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci 74:2485–2489CrossRefPubMedCentralPubMedGoogle Scholar
  12. Stosic-Grujicic S, Dimitrijevic M, Bartlett R (1999) Leflunomide protects mice from multiple low dose streptozotocin (MLD-SZ)-induced insulitis and diabetes. Clin Exp Immunol 117:44–50CrossRefPubMedCentralPubMedGoogle Scholar
  13. Tancrède G, Rousseau-Migneron S, Nadeau A (1983) Longterm changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Pathol 64:117–123PubMedCentralPubMedGoogle Scholar

Other Diabetogenic Compounds

  1. Bavelsky ZE, Zavyazkina TV, Moisev YS, Medvedev VI (1992) Zinc content in pancreatic islets in experimental diabetes induced by chelating agents. Patol Fiziol Eksp Ter 36:29–32Google Scholar
  2. Caterson ID, Cooney GJ, Vanner MA, Nicks JL, Williams PF (1988) The activities of the pyruvate dehydrogenase complex and of acetyl-CoA carboxylase in various tissues in experimental obesity: tissue differences and insulin resistance. Diabetes Nutr Metab 1:65–70Google Scholar
  3. Frerichs H, Creutzfeldt W (1971) Der experimentelle chemische diabetes. In: Dörzbach E (ed) Handbook of experimental pharmacology, vol 32/1. Insulin/Springer, Berlin/Heidelberg/New York, pp 159–202Google Scholar
  4. Goldberg ED, Eshchenko VA, Bovt VD (1991) The diabetogenic and acidotropic effects of chelators. Exp Pathol 42:59–64CrossRefPubMedGoogle Scholar
  5. Hansen WA, Christie MR, Kahn R, Norgard A, Abel I, Petersen AM, Jorgensen DW, Baekkeskov S, Nielsen JH, Lernmark A, Egeberg J, Richter-Olesen H, Grainger T, Kristensen JK, Brynitz S, Bilde T (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 10:53–57PubMedGoogle Scholar
  6. Heydrick SJ, Gautier N, Olichon-Berte C, Van Obberghen E, Le Marchand BY (1995) Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice. Am J Physiol Endocrinol Metab 268:E604–E612Google Scholar
  7. Maske H, Weinges K (1957) Untersuchungen über das Verhalten der Meerschweinchen gegenüber verschiedenen diabetogenen Noxen. Alloxan und Dithizon. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 230:406–420Google Scholar
  8. Sartin JL, Lamperti AA, Kemppainen RJ (1985) Alterations in insulin and glucagon secretion by monosodium glutamate lesions of the hypothalamic arcuate nucleus. Endocr Res 11:145–155PubMedGoogle Scholar
  9. Silva E, Hernandez L (1989) Goldthioglucose causes brain and serotonin depletion correlated with increased body weight. Brain Res 490:192–195CrossRefPubMedGoogle Scholar
  10. Stauffacher W, Lambert AE, Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237CrossRefPubMedGoogle Scholar

Growth Hormone-Induced Diabetes

  1. Cotes PM, Reid E, Young FG (1949) Diabetogenic action of pure anterior pituitary growth hormone. Nature 164:209–211CrossRefPubMedGoogle Scholar
  2. Martin TE, Young FG (1968) Experimental diabetes following growth hormone. In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, München, pp 763–770Google Scholar
  3. Young FG (1945) Growth and diabetes in normal animals treated with pituitary (anterior lobe) diabetogenic extract. Biochem J 39:515–536PubMedCentralPubMedGoogle Scholar

Corticosteroid-Induced Diabetes

  1. Abelove WA, Paschkis KE (1954) Comparison of the diabetogenic action of cortisone and growth hormone in different species. Endocrinology 55:637–654CrossRefPubMedGoogle Scholar
  2. Bellens R, Bastenie PA (1968) Experimental steroid diabetes. In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, München, pp 797–810Google Scholar
  3. Hausberger FX, Ramsay AJ (1953) Steroid diabetes in guinea pigs. Effect of cortisone administration on blood- and urinary glucose, nitrogen excretion, fat deposition, and the islets of Langerhans. Endocrinology 53:423–435CrossRefPubMedGoogle Scholar
  4. Ingle DJ (1941) The production of glycosuria in the normal rat by means of 17-hydroxy-11-dehydrocorticosterone. Endocrinology 29:649–652CrossRefGoogle Scholar
  5. Ingle DJ, Li CH, Evans HM (1946) The effect of adrenocorticotropic hormone on the urinary excretion of sodium, chloride, potassium, nitrogen and glucose in normal rats. Endocrinology 39:32–39CrossRefPubMedGoogle Scholar

Insulin Deficiency Due to Insulin Antibodies

  1. Arnim J, Grant RT, Wright PH (1960) Acute insulin deficiency provoked by single injections of anti-insulin serum. J Physiol Lond 153:131–145CrossRefGoogle Scholar
  2. Moloney PJ, Coval M (1955) Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J 59:179–185PubMedCentralPubMedGoogle Scholar
  3. Wright PH (1968) Experimental insulin-deficiency due to insulin antibodies. In: Pfeiffer EF (ed) Handbook of diabetes mellitus, pathophysiology and clinical considerations, vol I. Lehmanns, München, pp 841–865Google Scholar

Virus-Induced Diabetes

  1. Craighead J (1978) Current views on the etiology of insulin-dependent diabetes mellitus. N Engl J Med 299:1439–1445CrossRefPubMedGoogle Scholar
  2. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA (1996) Kilham rat virus triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 45:557–562CrossRefPubMedGoogle Scholar
  3. Giron DJ, Patterson RR (1982) Effect of steroid hormones on virus-induced diabetes mellitus. Infect Immun 37:820–822PubMedCentralPubMedGoogle Scholar
  4. Giron DJ, Cohen SJ, Lyons SP, Trombley ML, Gould CL (1983) Virus-induced diabetes mellitus in ICR Swiss mice is age dependent. Infect Immun 41:834–836PubMedCentralPubMedGoogle Scholar
  5. Gould CL, McMannama KG, Bigley NJ, Giron DJ (1985) Virusinduced murine diabetes. Enhancement by immunosuppression. Diabetes 34:1217–1221CrossRefPubMedGoogle Scholar
  6. Hayashi T, Yamamoto S, Onodera T (1995) Prevention of reovirus type2-induced diabetes-like syndrome in DBA/1 suckling mice by treatment with antibodies against intracellular adhesion molecule – 1 and lymphocyte function-associated antigen – 1. Int J Exp Pathol 76:403–409PubMedCentralPubMedGoogle Scholar
  7. Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, Baek HS, Doi K, Yoon JW (1997) Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyelitis virus-induced diabetes in mice. J Virol 71:4024–4031PubMedCentralPubMedGoogle Scholar
  8. See DM, Tilles JG (1995) Pathogenesis of virus-induced diabetes in mice. J Infect Dis 171:1131–1138CrossRefPubMedGoogle Scholar
  9. Stubbs M, Guberski DL, Like AA (1994) Preservation of GLUT2 expression in islet beta cells of Kilham rat virus (KRV)-infected diabetes-resistant BB/Wor rats. Diabetologia 37:1186–1194CrossRefPubMedGoogle Scholar
  10. Utsugi T, Kanda T, Tajima Y, Tomono S, Suzuki T, Murata K, Dan K, Seto Y, Kawazu S (1992) A new animal model of non-insulin-dependent diabetes mellitus induced by the NDK25 variant of encephalomyocarditis virus. Diabetes Res 20:109–119PubMedGoogle Scholar
  11. Vialettes B, Baume D, Charpin C, De Maeyer-Guignard J, Vague P (1983) Assessment of viral and immune factors in EMC virus-induced diabetes: effects of cyclosporin A and interferon. J Clin Lab Immunol 10:35–40PubMedGoogle Scholar
  12. Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virusinduced diabetes mellitus. XVII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.HelmholtzZentrum München, Helmholtz Diabetes CenterInstitute for Diabetes and ObesityMunichGermany

Personalised recommendations