Advertisement

Antiepileptic Activity

  • Mary-Jeanne Kallman
Living reference work entry

Latest version View entry history

Abstract

Epilepsy is a disease of high prevalence, known for thousands of years as “morbus sacer.” In spite of intensive investigations, the pathophysiology of epilepsy is still poorly understood with a high probability that there are multiple determining factors. Studies with various animal models have provided ample evidence for heterogeneity in the mechanisms of epileptogenesis. New evidence derives from investigations of kindling, which involves the delivery of brief, initially subliminal, electrical, or chemical stimuli to various areas of the brain. After 10–15 days of once-daily stimulation, the duration and intensity of after-discharges reach a stable maximum, and a characteristic seizure is produced. Subsequent stimulation then regularly elicits seizures. Currently there is extensive interest in the convulsive consequences of trauma and head injury and the relationship to depression, convulsions, and suicide (Walsh et al. 2016; Teshic et al. 2013). Future research in this area will establish appropriate treatment paradigms and drug therapies appropriate to reduce the risk of seizure from these situations.

References and Further Reading

General Considerations

  1. Alper K, Schwartz K, Kolts R, Khan A (2007) Seizure incidence in psychopharmacological clinical trials: an analysis of food and drug administration (FDA) summary basis of approval reports. Biol Psychiatry 62:345–354PubMedCrossRefPubMedCentralGoogle Scholar
  2. Asinof SK, Stacey J, Rizzo S, Buckley AR, Beyer BJ, Letts VA, Frankel WN, Bourmi RM (2015) Independent neuronal origin of seizures and behavioral comorbidities in an animal model of a severe childhood genetic epileptic encephalopathy. PLoS Genet 11(6).  https://doi.org/10.1371/journal.pgen.1005347PubMedPubMedCentralCrossRefGoogle Scholar
  3. Authier S, Delatte M, Kallman MJ, Stevens J, Markgraf C (2016) EEG in non-clinical drug safety assessments: current and emerging considerations. J Pharmacol Toxicol Methods 75:274–285CrossRefGoogle Scholar
  4. Aydin L, Erdem SR, Yazici C (2016) Zinc supplementation prolongs the latency of hyperthermia-induced febrile seizures in rats. Acta Physiol Hung 103(1):121–126CrossRefGoogle Scholar
  5. Bialer M, Johannessen SI, Levy RH, Perycca E, Tomson T, White HS (2015) Progress report on new antiepileptic drugs: a summary of the twelfth eilat conference (EILAT XII). Epilepsy Res 111:85–141PubMedCrossRefPubMedCentralGoogle Scholar
  6. Buscufiana P, Javela J, Delgado M, Fernandez de la Rosa R, Shiha A, Garcia-Garcia L, Pozo M (2016) [(18)F] FDG PET neuroimaging predicts pentylenetetrazol (PTZ) kindling outcome in rats. Mol Imaging Biol 18(5):733–740CrossRefGoogle Scholar
  7. Coppola A, Moshe SL (2012) Animal models. Handb Clin Neurol 107:63–98PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265CrossRefGoogle Scholar
  9. De Oliveira CC, De Oliveira CV, Grigoletto J, Robeiro LR, Funck VR, Grauncke AC, de Souza TL, Souto NS, Furian AF, Menezes IR, Oliveira MS (2016) Anticonvulsant activity of B-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav 56:26–31PubMedCrossRefPubMedCentralGoogle Scholar
  10. Doi T, Ueda Y, Nagatomo K, Willmore LJ (2009) Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling. Neurochem Res 34:1324–1331PubMedCrossRefPubMedCentralGoogle Scholar
  11. Easter A, Sharp TH, Valentin J-P, Pollard CE (2007) Pharmacological validation of a semi-automated in vitro hippocampal brain slide assay for assessment of seizure liability. J Pharmacol Toxicol Methods 56(2):223–233PubMedCrossRefPubMedCentralGoogle Scholar
  12. Easter A, Bell M, Damewood J, Redfern W, Valentin J-R, Winter M, Fonck C, Bialecki R (2009) Approaches to seizure risk assessment in preclinical drug discovery. Drug Dis Today 14(17/18):876–884CrossRefGoogle Scholar
  13. Fabene PF, Sbarbati A (2004) In vivo MRI in different models of experimental epilepsy. Curr Drug Targets 5:629–636PubMedCrossRefPubMedCentralGoogle Scholar
  14. Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278PubMedCrossRefPubMedCentralGoogle Scholar
  15. Gale K (1992) GABA and epilepsy: basic concepts from preclinical research. Epilepsia 33(Suppl 5):S3–S12PubMedPubMedCentralGoogle Scholar
  16. Hanaya R, Arita K (2016) The new antiepileptic drugs: their neuropharmacology and clinical indications. Neurol Med Chir(Tokyo) 56(5):205–220CrossRefGoogle Scholar
  17. Herman AE, Holmes GL (2016) Antiepileptic drug treatment strategies in neonatal epilepsy. Prog Brain Res 226:179–193CrossRefGoogle Scholar
  18. Holmes GL (2016) Effects of seizures on the developing brain and cognition. Semin Pediatr Neurol 23(2):120–126PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hout J, Raduoco-Thomas S, RaduocoThomas C (1973) Qualitative and quantitative evaluation of experimentally induced seizures. In: Anticonvulsant drugs, vol 1. Pergamon Press, Oxford/New York, pp 123–185Google Scholar
  20. Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Janz D (eds) Antiepileptic drugs. Handbook of experimental pharmacology, vol 74. Springer, Berlin/Heidelberg, pp 283–339Google Scholar
  21. Kumlien E, Lundberg P (2010) Seizure risk associated with neuroactive drugs: data from the WHO adverse drug reactions database. Seizure 19:68–73Google Scholar
  22. Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258PubMedCrossRefPubMedCentralGoogle Scholar
  23. Löscher W (1998) New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 342:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  24. Löscher W (2002a) Animal models of drug-resistant epilepsy. Novartis Found Symp 243:149–159PubMedPubMedCentralGoogle Scholar
  25. Löscher W (2002b) Animal models of epilepsy for the development of antiepileptic and disease-modifying drugs. A comparison of the pharmacology of kindling and poststatus epilepticus models of temporal epilepsy. Epilepsy Res 50:105–123PubMedCrossRefPubMedCentralGoogle Scholar
  26. Loscher W (2016) The search for new screening models of pharmacoresistant epilepsy: is induction of acute seizures in epileptic rodents a suitable approach. Neurochem Res 42:1926–1938.  https://doi.org/10.1007/s11064-016-2025-7CrossRefPubMedPubMedCentralGoogle Scholar
  27. Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lundt A, Womuth C, Siwek ME, Muller R, Ehninger D, Henseler C, Broich K, Papazoglou A, Weiergraber M (2016) EEG radiotelemetry in small laboratory rodents: a powerful state-of-the-art approach in neuropsychiatric, neurodegenerative, and epilepsy research. Neural Plast 2016:8213878.  https://doi.org/10.1155/2016/8213878CrossRefPubMedPubMedCentralGoogle Scholar
  29. MacDonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanisms of action. Adv Neurol 44:713–736PubMedPubMedCentralGoogle Scholar
  30. Meldrum BS (1986) Pharmacological approaches to the treatment of epilepsy. In: Meldrum BS, Porter RJ (eds) New anticonvulsant drugs. John Libbey, London/Paris, pp 17–30Google Scholar
  31. Meldrum BS (1989) GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Pharmacol 27:3S–11SCrossRefGoogle Scholar
  32. Meldrum BS (2002) Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res 50(1–2):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  33. Porter RJ, Rogawski MA (1992) New antiepileptic drugs: from serendipity to rational discovery. Epilepsia 33(Suppl 1):S1–S6PubMedCrossRefPubMedCentralGoogle Scholar
  34. Reddy K, Reife R, Cole AJ (2013) SGE-102: a novel therapy for refractory status epilepticus. Epilepsia 54(Suppl 6):81–83PubMedCrossRefPubMedCentralGoogle Scholar
  35. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286PubMedPubMedCentralGoogle Scholar
  36. Rogawski MA, Tofighy A, White HS, Matagne A, Wolff C (2015) Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res 110:189–205PubMedCrossRefPubMedCentralGoogle Scholar
  37. Rump S, Kowalczyk M (1987) Effects of antiepileptic drugs in electrophysiological tests. Pol J Pharmacol Pharm 39:557–566PubMedPubMedCentralGoogle Scholar
  38. Smyth MD, Barbaro NM, Baraban SC (2002) Effects of antiepileptic drugs on induced epileptiform activity in a rat model of dysplasia. Epilepsy Res 50:251–264PubMedCrossRefPubMedCentralGoogle Scholar
  39. Socala K, Szuster-Ciesielska A, Wlaz P (2016) SB 334867, a selective orexin receptor type 1 antagonist, elevates seizure threshold in mice. Life Sci 150:81–88PubMedCrossRefPubMedCentralGoogle Scholar
  40. Swinyard EA (1973) Assay of antiepileptic drug activity in experimental animals: standard tests. In: Anticonvulsant drugs, vol 1. Pergamon Press, Oxford/New York, pp 47–65Google Scholar
  41. Teshic H, Forni A, Anger K, Degrado J, Greenwood B (2013) Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am J Health Syst Pharm 70(9):759–766CrossRefGoogle Scholar
  42. Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 287–300CrossRefGoogle Scholar
  43. Walsh S, Dorman J, Fortin Y, Sikara L, Morrissey A, Collins K, MacDonald D (2016) A systematic review of the risk factors associated with the onset and natural progression of epilepsy. Neurotoxicol.  https://doi.org/10.1016/j.neuro2016.03.011
  44. Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272CrossRefGoogle Scholar
  45. Wong SB, Cheng SJ, Hung WC, Lee WT, Min MY (2015) Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS One 10(12).  https://doi.org/10.1371/journal.pone.0144806PubMedPubMedCentralCrossRefGoogle Scholar
  46. Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 57–583Google Scholar
  47. Zaccara G (2016) Brivaracetam: new compound approved for the treatment of epilepsy. Drugs Today 52(4):219–227PubMedPubMedCentralGoogle Scholar
  48. Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, Liang G, Li K, Cui L, Zhao B (2016) A highly selective inhibitor of glycome transporter-1 elevates the threshold for maximal electroshock-induced tonic seizure in mice. Biol Pharm Bull 39(2):174–180PubMedCrossRefPubMedCentralGoogle Scholar

In Vitro Methods

    3GABAB Receptor Binding

    1. Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 173–182Google Scholar
    2. Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 183–195Google Scholar
    3. Su CK (2016) Modulation of synchronous sympathetic firing behaviors by endogenous GABA(A) and glycine receptor-mediated activities in the neonatal rat spinal cord in vitro. Neuroscience 312:227–246PubMedCrossRefPubMedCentralGoogle Scholar

    3H-GABA Uptake in Rat Cerebral Cortex Synaptosomes

    1. Brehm L et al (1979) GABA uptake inhibitors and structurally related “pro-drugs”. In: Krogsgaard-Larsen P et al (eds) GABA-neurotransmitters. Academic, New York, pp 247–261Google Scholar
    2. Doi T, Ueda Y, Nagatomo K, Willmore LJ (2009) Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling. Neurochem Res 34:1324–1331PubMedCrossRefPubMedCentralGoogle Scholar
    3. Eid T, Greenbaum SE, Dhaher R, Lee TW, Zhou Y, Danbolt NC (2016) The glutamate-glutamine cycle in epilepsy. Adv Neural Biol 13:351–400Google Scholar
    4. Fjalland B (1978) Inhibition by neuroleptics of uptake of 3H GABA into rat brain synaptosomes. Acta Pharmacol et Toxicol 42:73–76CrossRefGoogle Scholar
    5. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (Lond) 96:79–88Google Scholar
    6. Iversen LL, Bloom FE (1972) Studies of the uptake of 3HGABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41:131–143PubMedCrossRefPubMedCentralGoogle Scholar
    7. Lason W, Chiebicka M, Rejdak K (2013) Research advances in basic mechanisms of seizures and antiepileptic drug action. 65(4):787–801Google Scholar
    8. Meldrum B et al (1982) GABA-uptake inhibitors as anticonvulsant agents. In: Okada Y, Roberts E (eds) Problems in GABA research from brain to bacteria. Excerpta Medica, Princeton, pp 182–191Google Scholar
    9. Roberts E (1974) γ-Aminobutyric acid and nervous system function – a perspective. Biochem Pharmacol 23:2637–2649PubMedCrossRefPubMedCentralGoogle Scholar
    10. Roskoski R (1978) Net uptake of L-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498PubMedCrossRefPubMedCentralGoogle Scholar
    11. Ryan L, Roskoski R (1977) Net uptake of γ-Aminobutyric acid by a high affinity synaptosomal transport system. J Pharm Exp Ther 200:285–291Google Scholar
    12. Snodgrass SR (1990) GABA and GABA neurons: controversies, problems, and prospects. Receptor site analysis, NEN, In, pp 23–33Google Scholar
    13. Tapia R (1975) Blocking of GABA uptake. In: Iversen I, Iversen S, Snyder S (eds) Handbook of psychopharmacology, vol 4. Plenum Press, New York, pp 33–34Google Scholar

    GABA Uptake and Release in Rat Hippocampal Slices

    1. Akaike N, Moorhouse AJ (2003) Techniques: applications of the nerve-bouton preparation in neuropharmacolgy. Trends Pharmacol Sci 24:44–47PubMedCrossRefPubMedCentralGoogle Scholar
    2. Akaike N, Muarkami N, Katsurabayashi S, Jin YH, Imazawa T (2002) Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampus neuron. Neurosci Res 42:187–195PubMedCrossRefPubMedCentralGoogle Scholar
    3. Caltana L, Heimrich B, Brusco A (2015) Further evidence for the neuroplastic role of cannabinoids: a study of organotypic hippocampal slice cultures. J Mol Neurosci 56(4):773–781PubMedCrossRefPubMedCentralGoogle Scholar
    4. Drewe JA, Childs GV, Kunze DL (1988) Synaptic transmission between dissociated adult mammalian neurons and attached synaptic boutons. Science 241:1810–1813PubMedCrossRefPubMedCentralGoogle Scholar
    5. Falch E, Larsson OM, Schousboe A, Krogsgard-Larsen P (1990) GABA-A agonists and GABA uptake inhibitors. Drug Dev Res 21:169–188CrossRefGoogle Scholar
    6. Haage D, Karlsson U, Johansson S (1998) Heterogeneous presynaptic Ca2+ channel types triggering GABA release onto medial preoptic neurons from rat. J Physiol Lond 507:77–91PubMedPubMedCentralCrossRefGoogle Scholar
    7. Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical anti-psychotic agent. 2. In vitro profile. Drug Dev Res 11:169–175CrossRefGoogle Scholar
    8. Jang IS, Rhee JS, Watanabe T, Akaike N, Akaike N (2001) Histaminergic modulation of GABAergic transmission in rat ventromedial hypothalamic neurons. J Physiol Lond 534:791–803PubMedPubMedCentralCrossRefGoogle Scholar
    9. Kishimoto K, Koyama S, Akaike N (2001) Synergistic μ-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology 41:529–538PubMedCrossRefPubMedCentralGoogle Scholar
    10. Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdale neurons. J Physiol Lond 518:525–538PubMedPubMedCentralCrossRefGoogle Scholar
    11. Lajtha A, Sershen H (1975) Inhibition of amino acid uptake by the absence of Na+ in slices of brain. J Neurochem 24:667–672PubMedCrossRefPubMedCentralGoogle Scholar
    12. Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiat Res 29:77–94PubMedCrossRefPubMedCentralGoogle Scholar
    13. Möhler H (1992) GABAergic synaptic transmission. Arzneim Forsch/Drug Res 42:211–214Google Scholar
    14. Nilsson M, Hansson E, Rönnbäck L (1990) Transport of valproate and its effects on GABA uptake in astroglial primary culture. Neurochem Res 15:763–767PubMedCrossRefPubMedCentralGoogle Scholar
    15. Nilsson M, Hansson E, Rönnbäck L (1992) Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 17:327–332PubMedCrossRefPubMedCentralGoogle Scholar
    16. Rhee JS, Ishibashi H, Akaike N (1999) Calcium channels in the GABAergic presynaptic nerve terminals projecting to Meynert neurons of the rat. J Neurochem 72:800–806PubMedCrossRefPubMedCentralGoogle Scholar
    17. Roskoski R (1978) Net uptake of L-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31:493–498PubMedCrossRefPubMedCentralGoogle Scholar
    18. Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626PubMedCrossRefPubMedCentralGoogle Scholar
    19. Taylor CP (1990) GABA receptors and GABAergic synapses as targets for drug development. Drug Dev Res 21:151–160CrossRefGoogle Scholar
    20. Taylor CP, Vartanian MG, Schwarz RD, Rock DM, Callahan MJ, Davis MD (1990) Pharmacology of CI-966:a potent GABA uptake inhibitor, in vitro and in experimental animals. Drug Dev Res 21:195–215CrossRefGoogle Scholar
    21. Vorobjev VS (1991) Vibrodissociation of sliced mammalian nervous tissue. J Neurosci Meth 38:145–150CrossRefGoogle Scholar
    22. Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244PubMedCrossRefPubMedCentralGoogle Scholar
    23. Wong S, Cheng S, Hung V, Lee W, Min M (2015) Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS One 10(12):e0144806.  https://doi.org/10.1371/journal.pone.0144806CrossRefGoogle Scholar

    Glutamate Receptors: [3H]CPP Binding

    1. Becker J, Li Z, Noe CR (1998) Molecular and pharmacological characterization of recombinant rat/mice N-methyl-d-aspartate receptor subtypes in the yeast Saccharomyces cerevisiae. Eur J Biochem 256:427–435PubMedCrossRefPubMedCentralGoogle Scholar
    2. Bettler B, Mulle C (1995) Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34:123–139PubMedCrossRefPubMedCentralGoogle Scholar
    3. Bräuner-Osboren H, Egebjerg J, Nielsen NØ, Madsen U, Krogsgaard-Larsen P (2000) Ligands for glutamate receptors: design and therapeutic properties. J Med Chem 43:2609–2645CrossRefGoogle Scholar
    4. Carlsson M, Carlsson A (1990) Interactions between glutaminergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276PubMedCrossRefPubMedCentralGoogle Scholar
    5. Carter C, Rivy JP, Scatton B (1989) Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-d-aspartate (NMDA) receptor. Eur J Pharmacol 164:611–612PubMedCrossRefPubMedCentralGoogle Scholar
    6. Chimirri A, Gitto R, Zappala M (1999) AMPA receptor antagonists. Expert Opin Ther Pat 9:557–570CrossRefGoogle Scholar
    7. Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35PubMedCrossRefPubMedCentralGoogle Scholar
    8. Clarke VRJ, Ballyk BA, Hoo KH, Mandelzys A, Pellizari A, Bath CP, Thomas J, Sharpe EF, Davies CH, Ornstein PL, Schoepp DD, Kamboj RK, Collingridge GL, Lodges D, Bleakman D (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389:599–603PubMedCrossRefPubMedCentralGoogle Scholar
    9. Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210Google Scholar
    10. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265CrossRefGoogle Scholar
    11. Cunningham MD, Ferkany JW, Enna SH (1994) Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci 54:135–148PubMedCrossRefPubMedCentralGoogle Scholar
    12. Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664PubMedPubMedCentralGoogle Scholar
    13. Davies J, Evans RH, Herrling PL, Jones AW, Olverman HJ, Pook P, Watkins JC (1986) CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res 382:169–173PubMedCrossRefPubMedCentralGoogle Scholar
    14. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedPubMedCentralGoogle Scholar
    15. Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. In: Current and future trends in anticonvulsant, anxiety, and stroke therapy. Wiley-Liss, pp 495–512Google Scholar
    16. Ferkany J, Coyle JT (1986) Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J Neurosci Res 16:491–503PubMedCrossRefPubMedCentralGoogle Scholar
    17. Fleck AW, Bahring R, Patneau DK, Mayer ML (1996) AMPA receptor heterogeneity in rat hippocampal neurons revealed by differential sensitivity to cyclothiazide. J Neurophysiol 75:2322–2333PubMedCrossRefPubMedCentralGoogle Scholar
    18. Fletcher EJ, Lodge D (1995) New developments in the molecular pharmacology of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacol Ther 70:65–89CrossRefGoogle Scholar
    19. Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164CrossRefGoogle Scholar
    20. Foster AC, Fagg GE (1987) Comparison of L-[3H]glutamate, D-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133:291–300PubMedCrossRefPubMedCentralGoogle Scholar
    21. Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258PubMedCrossRefPubMedCentralGoogle Scholar
    22. Harris EW, Ganong AH, Monaghan DT, Watkins JC, Cotman CW (1986) Action of 3-((±)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP): a new and highly potent antagonist of N-methyl-d-aspartate receptors in the hippocampus. Brain Res 382:174–177PubMedCrossRefPubMedCentralGoogle Scholar
    23. Hatt H (1999) Modification of glutamate receptor channels: molecular mechanisms and functional consequences. Naturwissensch 86:177–186CrossRefGoogle Scholar
    24. Herrling PL (1994) Clinical implications of NMDA receptors. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 376–394CrossRefGoogle Scholar
    25. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108PubMedCrossRefPubMedCentralGoogle Scholar
    26. Honoré T, Lauridsen J, Krogsgaard-Larsen P (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid to rat brain membranes. J Neurochem 38:173–178PubMedCrossRefPubMedCentralGoogle Scholar
    27. Honoré T, Davies SN, Drejer J, Fletchner EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalidinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703PubMedCrossRefPubMedCentralGoogle Scholar
    28. Hu RQ, Koh S, Togerson T, Cole AJ (1998) Neuronal stress and injury in C57/BL mice after systemic kainate administration. Brain Res 810:229–240PubMedCrossRefPubMedCentralGoogle Scholar
    29. Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407PubMedCrossRefPubMedCentralGoogle Scholar
    30. Iversen LL, Kemp JA (1994) Non-competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 469–486CrossRefGoogle Scholar
    31. Jones SM, Snell LD, Johnson KM (1989) Characterization of the binding of radioligands to the N-methyl-d-aspartate, phenylcyclidine and glycine receptors in buffy coat membranes. J Pharmacol Meth 21:161–168CrossRefGoogle Scholar
    32. Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298CrossRefGoogle Scholar
    33. Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci Suppl 5:1039–1042CrossRefGoogle Scholar
    34. Kohara A, Okada M, Tsutsumi R, Ohno K, Takahashi M, Shimizu-Sasamata M, Shishikura JI, Inami H, Sakamoto S, Yamaguchi T (1998) In vitro characterization of YM872, a selective, potent and highly water-soluble α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor antagonist. J Pharm Pharmacol 50:795–801PubMedCrossRefPubMedCentralGoogle Scholar
    35. Kodama M, Yamada M, Sato K, Kitamura Y, Koyama F, Sato T, Morimoto K, Kuroda S (1999) Effects of YM90K, a selective AMP receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in rats. Eur J Pharmacol 374:11–19PubMedCrossRefPubMedCentralGoogle Scholar
    36. Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drug 59:33–78CrossRefGoogle Scholar
    37. Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C, Bennett DA, Pastor G, Steel DJ, Boehm C, Cheney DL, Liebman JM, Williams M, Wood PL (1987) CPP, a selective N-methyl-d-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240:737–746PubMedPubMedCentralGoogle Scholar
    38. Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755, a selective and competitive N-methyl-d-aspartate type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246:65–75PubMedPubMedCentralGoogle Scholar
    39. Loftis JM, Janowsky A (2003) The N-methyl-d-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97:55–85PubMedCrossRefPubMedCentralGoogle Scholar
    40. London ED, Coyle JT (1979) Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol 15:492–505PubMedPubMedCentralGoogle Scholar
    41. Löscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 54:721–741PubMedCrossRefPubMedCentralGoogle Scholar
    42. Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4:4–11PubMedCrossRefPubMedCentralGoogle Scholar
    43. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276PubMedCrossRefPubMedCentralGoogle Scholar
    44. Mayer ML, Benveniste M, Patneau DK (1994) NMDA receptor agonists and competitive antagonists. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 132–146CrossRefGoogle Scholar
    45. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181PubMedCrossRefPubMedCentralGoogle Scholar
    46. Meldrum BS (1998) The glutamate synapse as a therapeutic target: perspectives for the future. Prog Brain Res 116:441–458PubMedCrossRefPubMedCentralGoogle Scholar
    47. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015SPubMedCrossRefPubMedCentralGoogle Scholar
    48. Meldrum BS, Chapman AG (1994) Competitive NMDA antagonists as drugs. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 457–468CrossRefGoogle Scholar
    49. Monaghan DT, Buller AL (1994) Anatomical, pharmacological, and molecular diversity of native NMDA receptor subtypes. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 158–176CrossRefGoogle Scholar
    50. Monaghan DT, Cotman CW (1982) The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252:91–100PubMedCrossRefPubMedCentralGoogle Scholar
    51. Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402PubMedCrossRefPubMedCentralGoogle Scholar
    52. Mukhin A, Kovaleva ES, London ED (1997) Two affinity states of N-methyl-d-aspartate recognition sites: modulation by cations. J Pharmacol Exp Ther 282:945–954PubMedPubMedCentralGoogle Scholar
    53. Murphy DE, Schneider J, Boehm C, Lehmann J, Williams M (1987a) Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid to rat brain membranes: a selective, high-affinity ligand for N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 240:778–784PubMedPubMedCentralGoogle Scholar
    54. Murphy DE, Snowhill EW, Williams M (1987b) Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem Res 12:775–782PubMedCrossRefPubMedCentralGoogle Scholar
    55. Murphy DE, Hutchinson AJ, Hurt SD, Williams M, Sills MA (1988) Characterization of the binding of [3H]-CGS 19755, a novel N-methyl-d-aspartate antagonist with nanomolar affinity in rat brain. Br J Pharmacol 95:932–938PubMedPubMedCentralCrossRefGoogle Scholar
    56. Mutel V, Trube G, Klingelschmidt A, Messer J, Bleuel Z, Humbel U, Clifford MM, Ellis GJ, Richards JG (1998) Binding characteristics of a potent AMPA receptor antagonist [3H]Ro 48–8587 in rat brain. J Neurochem 71:418–426PubMedCrossRefPubMedCentralGoogle Scholar
    57. Nakanishi S (1992) Molecular diversity of glutamate receptors and implication for brain function. Science 258:593–603CrossRefGoogle Scholar
    58. Nielsen EO, Varming T, Mathiesen C, Jensen LH, Moller A, Gouliaev AH, Watjen F, Drejer J (1999) SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 289:1492–1501PubMedPubMedCentralGoogle Scholar
    59. Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30:47–71PubMedCrossRefPubMedCentralGoogle Scholar
    60. Olsen RW, Szamraj O, Houser CR (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 402:243–254PubMedCrossRefPubMedCentralGoogle Scholar
    61. Olverman JH, Monaghan DT, Cotman CW, Watkins JC (1986) [3H]CPP, a new competitive ligand for NMDA receptors. Eur J Pharmacol 131:161–162PubMedCrossRefPubMedCentralGoogle Scholar
    62. Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS disorders as a target for drug development. Drug News Perspect 11:523–569PubMedCrossRefPubMedCentralGoogle Scholar
    63. Piotrovsky LB, Garyaev AP, Poznyakova LN (1991) Dipeptide analogues of N-acetylaspartylglutamate inhibit convulsive effects of excitatory amino acids in mice. Neurosci Lett 125:227–230PubMedCrossRefPubMedCentralGoogle Scholar
    64. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Rev 42:223–286PubMedPubMedCentralGoogle Scholar
    65. Tauboll E, Gjerstad L (1998) Effects of antiepileptic drugs on the activation of glutamate receptors. Prog Brain Res 116:385–393PubMedCrossRefPubMedCentralGoogle Scholar
    66. Thomsen C (1997) The L-AP4 receptor. Gen Pharmacol 29:151–158PubMedCrossRefPubMedCentralGoogle Scholar
    67. Toms NJ, Reid ME, Phillips W, Kemp MC, Roberts PJ (1997) A novel kainate receptor ligand [3H]-(2S,4R)-4-methylglutamate. Pharmacological characterization in rabbit brain membranes. Neuropharmacology 36:1483–1488PubMedCrossRefPubMedCentralGoogle Scholar
    68. Wahl P, Frandsen A, Madsen U, Schousboe A, Krogsgaard-Larsen P (1998) Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors. Neuropharmacology 37:1205–1210PubMedCrossRefPubMedCentralGoogle Scholar
    69. Watkins JC (1994) The NMDA receptor concept: origins and development. In: Collingridge GL, Watkins JC (eds) The NMDA receptor, 2nd edn. Oxford University Press, Oxford, pp 1–30Google Scholar
    70. Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272CrossRefGoogle Scholar
    71. Worms P, Willigens MT, Lloyd KG (1981) The behavioral effects of systemically administered kainic acid: a pharmacological analysis. Life Sci 29:2215–2225PubMedCrossRefPubMedCentralGoogle Scholar
    72. Willis CL, Wacker DA, Bartlett RD, Bleakman D, Lodge D, Chamberlin AR, Bridges RJ (1997) Irreversible inhibition of high affinity [3H]kainate binding by a photoactivatable analogue: (2′S,3′S,4′R)-2′-carboxy-4′-(2-diazo-1-oxo-3,3,3-trifluoropropyl)-3′-pyrrolidinyl acetate. J Neurochem 68:1503–1510PubMedCrossRefGoogle Scholar
    73. Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133PubMedCrossRefPubMedCentralGoogle Scholar
    74. Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemidissected spinal cord in vitro. Br J Pharmacol 106:367–372PubMedPubMedCentralCrossRefGoogle Scholar
    75. Zhou L-L, Gu ZQ, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high affinity ligand for kainate receptors. J Pharmacol Exp Ther 280:422–427PubMedGoogle Scholar

    NMDA Receptor Complex: [3H]TCP Binding

    1. Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368PubMedPubMedCentralGoogle Scholar
    2. Bashir ZI, Bortolotto ZA, Davies CH, Berretta M, Irving AJ, Seal AJ, Henley AM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350PubMedCrossRefPubMedCentralGoogle Scholar
    3. Bednar B, Cunningham ME, Kiss L, Cheng G, McCauley JA, Liverton NJ, Koblan KS (2004) Kinetic characterization of novel NR2B antagonists using fluorescence detection of calcium flux. J Neurosci Meth 137:247–255CrossRefGoogle Scholar
    4. Chenard BL, Menniti FS (1999) Antagonists selective for NMDA receptors containing the NR2B subunit. Curr Pharm Res 5:381–404Google Scholar
    5. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265CrossRefGoogle Scholar
    6. Dannhardt G, von Gruchalla M, Elben U (1994) Tools for NMDA-receptor elucidation: synthesis of spacer-coupled MK-801 derivatives. Pharm Pharmacol Lett 4:12–15Google Scholar
    7. Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists. In: Current and future trends in anticonvulsant, anxiety, and stroke therapy. Wiley-Liss, Hoboken, New Jersey, pp 495–512Google Scholar
    8. Ebert B, Madsen U, Lund TM, Lenz SM, Krogsgaard-Larsen P (1994) Molecular pharmacology of the AMPA agonist, (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, (R)-APPA. Neurochem Int 24:507–515PubMedCrossRefPubMedCentralGoogle Scholar
    9. Fischer G, Mutel V, Trube G, Malherbe P, Kew JNC, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25–6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NRB2 subunit. J Pharmacol Exp Ther 283:1285–1292PubMedPubMedCentralGoogle Scholar
    10. Goldman ME, ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [3H]phencyclidine and (+)-[3H]SKΒ-10,047 binding sites in rat cerebral cortex. FEBS Lett 190:333–336PubMedCrossRefPubMedCentralGoogle Scholar
    11. Grimwood S, ILe Bourdellès B, Atack JR, Barton C, Cockettt W, Cook SM, Gilbert E, Hutson PH, McKernan RM, Myers J, Ragan CI, Wingrove PB, Whiting PJ (1996) Generation and characterization of stable cell lines expressing recombinant human N-methyl-d-aspartate receptor subtypes. J Neurochem 66:2239–2247PubMedCrossRefPubMedCentralGoogle Scholar
    12. Hansen JJ, Krogsgaard-Larsen P (1990) Structural, conformational, and stereochemical requirements of central excitatory amino acid receptors. Med Res Rev 10:55–94PubMedCrossRefPubMedCentralGoogle Scholar
    13. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of N-methyl-d-aspartate receptor subunits. J Biol Chem 268:2836–2843PubMedPubMedCentralGoogle Scholar
    14. Iversen LL (1994) MK-801 (Dizocilpine maleate) – NMDA receptor antagonist. Neurotransmiss 10(1):1–4Google Scholar
    15. Javitt DC, Zukin SR (1989) Biexponential kinetics of [3H]MK-801 binding: evidence for access to closed and open N-methyl-d-aspartate receptor channels. Mol Pharmacol 35:387–393PubMedPubMedCentralGoogle Scholar
    16. Johnson KM, Jones SM (1990) Neuropharmacol of phencyclidine: basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750PubMedCrossRefPubMedCentralGoogle Scholar
    17. Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560PubMedCrossRefPubMedCentralGoogle Scholar
    18. Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10:294–298CrossRefGoogle Scholar
    19. Kew JNC, Trube G, Kemp JA (1998) State-dependent NMDA receptor antagonism by Ro 8–4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br J Pharmacol 123:463–472PubMedPubMedCentralCrossRefGoogle Scholar
    20. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushyia E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41PubMedCrossRefPubMedCentralGoogle Scholar
    21. Loo P, Braunwalder A, Lehmann J, Williams M (1986) Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur J Pharmacol 123:467–468PubMedCrossRefPubMedCentralGoogle Scholar
    22. Loo PS, Braunwalder AF, Lehmann J, Williams M, Sills MA (1987) Interaction of L-glutamate and magnesium with phencyclidine recognition sites in rats brain: evidence for multiple affinity states of the phencyclidine/N-methyl-d-aspartate receptor complex. Mol Pharmacol 32:820–830PubMedPubMedCentralGoogle Scholar
    23. Maragos WF, Chu DCM, Greenamyre T, Penney JB, Young AB (1986) High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur J Pharmacol 123:173–174PubMedCrossRefPubMedCentralGoogle Scholar
    24. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765PubMedCrossRefPubMedCentralGoogle Scholar
    25. Meguro H, Mori H, Araki K, Kushiya E, Katsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74PubMedCrossRefPubMedCentralGoogle Scholar
    26. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221PubMedCrossRefPubMedCentralGoogle Scholar
    27. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37PubMedCrossRefPubMedCentralGoogle Scholar
    28. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi N (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873PubMedPubMedCentralGoogle Scholar
    29. Nowak G, Remond A, McNamara M, Paul IA (1995) Swim stress increases the potency of glycine at the N-methyl-d-aspartate receptor complex. J Neurochem 64:925–927PubMedCrossRefPubMedCentralGoogle Scholar
    30. Reyes M, Reyes A, Opitz T, Kapin MA, Stanton PK (1998) Eliprodil, a non-competitive, NR2B-selective NMDA antagonist, protects pyramidal neurons in hippocampal slides from hypoxic/ischemic damage. Brain Res 782:212–218PubMedCrossRefPubMedCentralGoogle Scholar
    31. Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-d-aspartate receptor. Mol Pharmacol 33:581–584PubMedPubMedCentralGoogle Scholar
    32. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Reviews 42:223–286Google Scholar
    33. Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with the N-methyl-d-aspartate receptor complex. Mol Pharmacol 36:836–839PubMedPubMedCentralGoogle Scholar
    34. Schoepp D, Bockaert J, Sladeczek F (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11:508–515PubMedCrossRefPubMedCentralGoogle Scholar
    35. Sills MA, Fagg G, Pozza M, Angst C, Brundish DE, Hurt SD, Wilusz EJ, Williams M (1991) [3H]CGP 39653: a new N-methyl-d-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur J Pharmacol 192:19–24PubMedCrossRefPubMedCentralGoogle Scholar
    36. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852PubMedCrossRefPubMedCentralGoogle Scholar
    37. Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-d-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–320PubMedCrossRefPubMedCentralGoogle Scholar
    38. Snell LD, Morter RS, Johnson KD (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-d-aspartate operated ion channel. Eur J Pharmacol 156:105–110PubMedCrossRefPubMedCentralGoogle Scholar
    39. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832PubMedCrossRefPubMedCentralGoogle Scholar
    40. Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression patterns of two metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378PubMedCrossRefPubMedCentralGoogle Scholar
    41. Thedinga KH, Benedict MS, Fagg GE (1989) The N-methyl-d-aspartate (NMDA) receptor complex: a stoechiometric analysis of radioligand binding domains. Neurosci Lett 104:217–222PubMedCrossRefPubMedCentralGoogle Scholar
    42. Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends in Neurosci 12:349–353CrossRefGoogle Scholar
    43. Vignon J, Chicheportiche R, Chicheportiche M, Kamenka JM, Geneste P, Lazdunski M (1983) [3H]TPC: a new tool with high affinity to the PCP receptor in rat brain. Brain Res 280:194–197PubMedCrossRefPubMedCentralGoogle Scholar
    44. Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272CrossRefGoogle Scholar
    45. Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11:25–33PubMedCrossRefPubMedCentralGoogle Scholar
    46. Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-d-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol 36:575–581PubMedPubMedCentralGoogle Scholar
    47. Wong EHF, Kemp JA (1991) Sites for antagonism on the N-methyl-d-aspartate receptor channel complex. Ann Rev Pharmac Toxic 31:401–425CrossRefGoogle Scholar
    48. Wong EHF, Knight AR, Woodruff GN (1988) [3H]MK-801 labels a site on the N-methyl-d-aspartate receptor channel complex in rat brain membranes. J Neurochem 50:274–281PubMedCrossRefPubMedCentralGoogle Scholar
    49. Yoneda Y, Ogita K (1991) Neurochemical aspects of the N-methyl-d-aspartate receptor complex. Neurosci Res 10:1–33PubMedCrossRefPubMedCentralGoogle Scholar

    Metabotropic Glutamate Receptors

    1. Acher FC, Tellier FJ, Azerad R, Brabet IN, Fagni L, Pin JPR (1997) Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes. J Med Chem 40:3119–3129PubMedCrossRefPubMedCentralGoogle Scholar
    2. Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplementGoogle Scholar
    3. Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)-cyclopropa[b]chromenla-carboxylates. Bioorg Med Chem Lett 6:763–766CrossRefGoogle Scholar
    4. Attwell PJE, Singh-Kent N, Jane D, Croucher MJ, Bradford HF (1998) Anticonvulsant and glutamate release inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′ R,3′R)-2-(2′ 3′ dicarboxycyclopropyl)-glycine (DCG-IV). Brain Res 805:138–143PubMedCrossRefPubMedCentralGoogle Scholar
    5. Bedingfield JS, Jane DE, Kemp MC, Toms NJ, Roberts PJ (1996) Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors. Eur J Pharmacol 309:71–78PubMedCrossRefPubMedCentralGoogle Scholar
    6. Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595PubMedPubMedCentralCrossRefGoogle Scholar
    7. Brauner-Osborne H, Nielsen B, Krogsgaard-Larsen P (1998) Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors. Eur J Pharmacol 350:311–316PubMedCrossRefPubMedCentralGoogle Scholar
    8. Bruno V, Battaglia G, Copani A, Casabona G, Storto M, di Giorgi-Gerevini V, Ngomba R, Nicoletti F (1998) Metabotropic glutamate receptors and neurodegeneration. Prog Brain Res 116:209–221PubMedCrossRefPubMedCentralGoogle Scholar
    9. Cartmell J, Adam G, Chaboz S, Henningsen R, Kemp JA, Klingelschmidt A, Metzler V, Monsma F, Schaffhauser H, Wichmann J, Mutel V (1998) Characterization of [3H](2S,2′R,3′R)-2-(2′, 3′-dicarboxycyclopropyl)glycine ([3H]DCG IV) binding to metabotropic mGlu2 receptor transfected cell membranes. Br J Pharmacol 123:497–504PubMedPubMedCentralCrossRefGoogle Scholar
    10. Christoffersen GRJ, Christensen LH, Hammer P, Vang M (1999) The class I metabotropic glutamate receptor antagonist, AIDA, improves short-term and impairs long-term memory in a spatial task for rats. Neuropharmacology 38:817–823PubMedCrossRefPubMedCentralGoogle Scholar
    11. Conn PJ, Pin JP (1997) Pharmacology and function of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 37:205–237CrossRefGoogle Scholar
    12. Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 1003:12–21PubMedCrossRefPubMedCentralGoogle Scholar
    13. DeBlasi A, Conn PJ, Pin JP, Nicolette F (2001) Molecular determinants of metabotropic glutamate signaling. Trends Pharmacol Sci 22:114–120CrossRefGoogle Scholar
    14. Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:265–267PubMedCrossRefPubMedCentralGoogle Scholar
    15. Eriksen L, Thomsen C (1995) [3H]-L-2-amino-4-phosphonobutyrate labels a metabotropic glutamate receptor, mGluR4a. Br J Pharmacol 116:3279–3287PubMedPubMedCentralCrossRefGoogle Scholar
    16. Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999) (R,S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687PubMedPubMedCentralGoogle Scholar
    17. Gssparini F, Kuhn R, Pin JP (2002) Allosteric modulators of group I metabotropic glutamate receptors: novel subtype selective ligands and therapeutic perspectives. Curr Opin Pharmacol 2:43–49CrossRefGoogle Scholar
    18. Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY354740: a potent and highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284:651–660PubMedPubMedCentralGoogle Scholar
    19. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Ann Rev Neurosci 17:31–108PubMedCrossRefPubMedCentralGoogle Scholar
    20. Ishida M, Akagi H, Shimamoto K, Ohfune Y, Shinozaki H (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res 537:311–314PubMedCrossRefPubMedCentralGoogle Scholar
    21. Ishida M, Saitoh T, Nakamura Y, Kataoka K, Shinozaki H (1994) A novel metabotropic glutamate receptor agonist: (2S,1′ S,2′ R,3′R)-2-(carboxy-3-methoxymethylcyclopropyl)glycine (cis-MCG-I). Eur J Pharmacol Mol Pharmacol Sect 268:267–270CrossRefGoogle Scholar
    22. Jane D, Doherty A (2000) Muddling through the mGlu maze? Tocris Review No. 13Google Scholar
    23. Jane DE, Jones PLSJ, Pook PCK, Tse HW, Watkins JC (1994) Actions of two new antagonists showing selectivity for different subtypes of metabotropic glutamate receptor in the neonatal spinal cord. Br J Pharmacol 112:809–816PubMedPubMedCentralCrossRefGoogle Scholar
    24. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 37:1–12PubMedCrossRefPubMedCentralGoogle Scholar
    25. Knöpfel T, Kuhn R, Allgeier H (1995) Metabotropic glutamate receptors: novel targets for drug development. J Med Chem 38:1417–1425PubMedCrossRefPubMedCentralGoogle Scholar
    26. Knöpfel T, Madge T, Nicoletti F (1996) Metabotropic glutamate receptors. Expert Opin Ther Pat 6:1061–1067CrossRefGoogle Scholar
    27. Konieczny J, Ossowska K, Wolfarth S, Pilc A (1998) LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedeberg’s Arch Pharmacol 358:500–502CrossRefGoogle Scholar
    28. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL Jr, Wright PA, Johnson PG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0]-hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040PubMedCrossRefPubMedCentralGoogle Scholar
    29. Nakanishi S, Masu M (1994) Molecular diversity and function of glutamate receptors. Ann Rev Biophys Biomol Struct 23:319–348CrossRefGoogle Scholar
    30. Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: a new target for the treatment of neurodegenerative disorders? Trends Neurosci 19:267–271PubMedCrossRefPubMedCentralGoogle Scholar
    31. Okamaoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269:1231–1236Google Scholar
    32. Ornstein PL, Arnold MB, Bleisch TJ, Wright RA, Wheeler WJ, Schoepp DD (1998) [3H]LY341495, a highly potent, selective and novel radioligand for labeling group II metabotropic glutamate receptors. Bioorg Med Chem Lett 8:1919–1922PubMedCrossRefPubMedCentralGoogle Scholar
    33. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26PubMedCrossRefPubMedCentralGoogle Scholar
    34. Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1:297–317PubMedCrossRefPubMedCentralGoogle Scholar
    35. Porter RHP, Briggs RSJ, Roberts PJ (1992) L-Aspartate-β-hydroxamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci Lett 144:87–89PubMedCrossRefPubMedCentralGoogle Scholar
    36. Riedel G, Reymann KG (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 157:1–19PubMedCrossRefPubMedCentralGoogle Scholar
    37. Schaffhauser H, Richards JG, Cartmell J, Chaboz S, Kemp JA, Klingelschmidt A, Messer J, Stadler H, Woltering T, Mutel V (1998) In vitro binding characteristics of a new selective group II metabotropic glutamate receptor radioligand, [3H]LY354740, in rat brain. Mol Pharmacol 53:228–233PubMedCrossRefPubMedCentralGoogle Scholar
    38. Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20PubMedCrossRefPubMedCentralGoogle Scholar
    39. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476PubMedCrossRefPubMedCentralGoogle Scholar
    40. Skerry TM, Genever PG (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22:174–181PubMedCrossRefPubMedCentralGoogle Scholar
    41. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179PubMedCrossRefPubMedCentralGoogle Scholar
    42. Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression pattern of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378PubMedCrossRefPubMedCentralGoogle Scholar
    43. Thomsen C, Dalby NO (1998) Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole-induced seizure activity in mice. Neuropharmacology 37:1465–1473PubMedCrossRefPubMedCentralGoogle Scholar
    44. Thomsen C, Mulvihill ER, Haldeman B, Pickering DS, Hampson DR, Suzdak PD (1993) A pharmacological characterization of the mGluR1α subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res 619:22PubMedCrossRefPubMedCentralGoogle Scholar
    45. Thomsen C, Boel E, Suzdak PD (1994) Action of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol 267:77–84PubMedCrossRefPubMedCentralGoogle Scholar
    46. Thomsen C, Bruno V, Nicoletti F, Marinozzi M, Pelliciari R (1996) (2S,1′S,2′S,3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine, a potent and selective antagonist of type 2 metabotropic glutamate receptors. Mol Pharmacol 50:6–9PubMedPubMedCentralGoogle Scholar
    47. Ure J, Baudry M, Pezassolo M (2006) Metabotropic receptors and epilepsy. J Neurol Sci 247(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
    48. Varney MA, Suto CM (2000) Discovery of subtype-selective metabotropic glutamate receptor ligands using functional HTS assays. Drug Disc Today: HTS Suppl 1:20–26CrossRefGoogle Scholar
    49. Watkins J, Collingridge G (1994) Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci 15:333–342PubMedCrossRefPubMedCentralGoogle Scholar

    Excitatory Amino Acid Transporters

    1. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569PubMedCrossRefPubMedCentralGoogle Scholar
    2. Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58Google Scholar
    3. Robinson MB, Sinor JD, Dowd LA, Kerwin JF Jr (1993) Subtypes of sodium-dependent high-affinity L-[3H]glutamate transport activity. Pharmacologic specificity and regulation by sodium and potassium. J Neurochem 60:1657–1179CrossRefGoogle Scholar
    4. Seal RP, Amara SG (1999) Excitatory amino acid transporters: a family in flux. Annu Rev Pharmacol Toxicol 39:431–456PubMedCrossRefPubMedCentralGoogle Scholar
    5. Vandenberg RJ (1998) Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 25:393–400PubMedCrossRefPubMedCentralGoogle Scholar
    6. Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671PubMedCrossRefPubMedCentralGoogle Scholar
    7. Vandenberg RJ, Mitrovic AD, Chebib M, Balcar VJ, Johnston GAR (1997) Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Molec Pharmacol 51:809–815CrossRefGoogle Scholar
    8. Woodhull AM (1973) Ion blockage of sodium channels in nerve. J Gen Physiol 61:667–708CrossRefGoogle Scholar

    [35S]TBPS Binding in Rat Cortical Homogenates and Sections

    1. Casida JE, Palmer CJ, Cole LM (1985) Bicycloorthocarboxylate convulsants. Potent GABAA receptor antagonists. Mol Pharmacol 28:246–253PubMedPubMedCentralGoogle Scholar
    2. Gee KW, Lawrence LJ, Yamamura HI (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of gamma-aminobutyric acid and ligand efficacy. Mol Pharmacol 30:218–225PubMedPubMedCentralGoogle Scholar
    3. Macksay G, Ticku MK (1985a) Dissociation of [35S]-t-butylbicyclophosphorothionate binding differentiates convulsant and depressant drugs that modulate GABAergic transmission. J Neurochem 44:480–486CrossRefGoogle Scholar
    4. Macksay G, Ticku MK (1985b) GABA, depressants and chloride ions affect the rate of dissociation of [35S]-t-butyl-bicyclophosphorothionate binding. Life Sci 37:2173–2180CrossRefGoogle Scholar
    5. Olsen RW, Yang J, King RG, Dilber A, Stauber GB, Ransom RW (1986) Barbiturate and benzodiazepine modulation of GABA receptor binding and function. Life Sci 39:1969–1976PubMedCrossRefPubMedCentralGoogle Scholar
    6. Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23:326–336PubMedPubMedCentralGoogle Scholar
    7. Supavilai P, Karabath M (1984) [35S]-t-Butylbicyclophosphorothionate binding sites are constituents of the γ-aminobutyric acid benzodiazepine receptor complex. J Neurosci 4:1193–1200PubMedCrossRefPubMedCentralGoogle Scholar
    8. Trifiletti RR, Snowman AM, Snyder SH (1984) Anxiolytic cyclopyrrolone drugs allosterically modulate the binding of [35S]t-butylbicyclophosphorothionate to the benzodiazepine/γ-aminobutyric acid-A receptor/chloride anionophore complex. Mol Pharmacol 26:470–476PubMedPubMedCentralGoogle Scholar
    9. Trifiletti RR, Snowman AM, Snyder SH (1985) Barbiturate recognition site on the GABA/Benzodiazepine receptor complex is distinct from the picrotoxin/TBPS recognition site. Eur J Pharmacol 106:441–447CrossRefGoogle Scholar

    [3H]glycine Binding in Rat Cerebral Cortex

    1. Baron BM, Harrison BL, Miller FP, McDonald IA, Salituro FG, Schmidt CJ, Sorensen SM, White HS, Palfreyman MG (1990) Activity of 5,7-dichlorokynurenic acid, a potent antagonist at the N-methyl-d-aspartate receptor-associated glycine binding site. Mol Pharmacol 38:554–561PubMedPubMedCentralGoogle Scholar
    2. Baron BM, Siegel BW, Harrison BL, Gross RS, Hawes C, Towers P (1996) [3H]MDL 105,519, a high affinity radioligand for the N-methyl-d-aspartate receptor-associated glycine recognition site. J Pharmacol Exp Ther 279:62–68PubMedPubMedCentralGoogle Scholar
    3. Becker L, von Wegener J, Schenkel J, Zeilhofer HU, Swandulla D, Weiher H (2002) Disease specific human glycine receptor αl subunit causes hyperekplexia phenotype and impaired glycine and GABAA-receptor transmission in transgenic mice. J Neurosci 22:2505–2512PubMedCrossRefPubMedCentralGoogle Scholar
    4. Bonhaus DW, Burge BC, McNamara JO (1978) Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel. Eur J Pharmacol 142:489–490CrossRefGoogle Scholar
    5. Bonhaus DW, Yeh G-C, Skaryak L, McNamara JO (1989) Glycine regulation of the N-methyl-d-aspartate receptorgated ion channel in hippocampal membranes. Mol Pharmacol 36:273–279PubMedGoogle Scholar
    6. Chazot PL, Reiss C, Chopra B, Stephenson FA (1998) [3H]MDL 105,519 binds with equal high affinity to both assembled and unassembled NR1 subunits of the NMDA receptor. Eur J Pharmacol 353:137–140PubMedCrossRefPubMedCentralGoogle Scholar
    7. Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273–280CrossRefGoogle Scholar
    8. Danysz W, Wroblewski JT, Brooker G, Costa E (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Res 479:270–276PubMedCrossRefPubMedCentralGoogle Scholar
    9. Foster AC, Kemp JA, Leeson PD, Grimwood S, Donald AE, Marshall GR, Priestley T, Smith JD, Carling RW (1992) Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-d-aspartate receptor from rat brain. Mol Pharmacol 41:914–922PubMedPubMedCentralGoogle Scholar
    10. Hargreaves RJ, Rigby M, Smith D, Hill RG (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 110:36–42PubMedPubMedCentralCrossRefGoogle Scholar
    11. Hofner G, Wanner KT (1997) Characterization of the binding of [3H]MDL 105,519, a radiolabelled antagonist for the Nmethyl-D-aspartate receptor-associated glycine site to pig cortical brain membranes. Neurosci Lett 226:79–82PubMedCrossRefPubMedCentralGoogle Scholar
    12. Jansen KLR, Dragunow M, Faull RLM (1989) [3H]Glycine binding sites, NMDA and PCP receptors have similar distributions in the human hippocampus: an autoradiographic study. Brain Res 482:174–1178PubMedCrossRefPubMedCentralGoogle Scholar
    13. Kessler M, Terramani T, Lynch B, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328PubMedCrossRefPubMedCentralGoogle Scholar
    14. Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23:519–527PubMedCrossRefPubMedCentralGoogle Scholar
    15. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095PubMedCrossRefPubMedCentralGoogle Scholar
    16. Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP (1989) Characterization of a [3H]glycine recognition site as a modulatory site of the N-methyl-d-aspartate receptor complex. J Neurochem 53:370–375PubMedCrossRefPubMedCentralGoogle Scholar
    17. Oliver MW, Kessler M, Larson J, Schottler F, Lynch G (1990) Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 5:265–270PubMedCrossRefPubMedCentralGoogle Scholar
    18. Ransom RW, Deschenes NL (1988) NMDA-induced hippocampal [3H]norepinephrine release is modulated by glycine. Eur J Pharmacol 156:149–155PubMedCrossRefPubMedCentralGoogle Scholar
    19. Rao TS, Cler JA, Emmet MR, Mick SJ, Iyengar S, Wood PL (1990) Glycine, glycinamide, and D-serine act as positive modulators of signal transduction at the N-methyl-daspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacology 29:1075–1080PubMedCrossRefPubMedCentralGoogle Scholar
    20. Rees MI, Lewis TM, Kwok JBJ, Mortier GR, Govaert P, Snell RG, Schofield PR, Owen MJ (2002) Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11:853–860PubMedCrossRefPubMedCentralGoogle Scholar
    21. Reynolds IJ, Murphy SN, Miller RJ (1987) 3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci U S A 84:7744–7748PubMedPubMedCentralCrossRefGoogle Scholar
    22. Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with N-methyl-d-aspartate receptor complex. Mol Pharmacol 36:836–839PubMedPubMedCentralGoogle Scholar
    23. Schmieden V, Betz H (1995) Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic compounds. Mol Pharmacol 48:919–927PubMedPubMedCentralGoogle Scholar
    24. Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-d-aspartate induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83:313–317PubMedCrossRefPubMedCentralGoogle Scholar
    25. Snell LD, Morter RS, Johnson KM (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-d-aspartate operated ion channel. Eur J Pharmacol 156:105–110PubMedCrossRefPubMedCentralGoogle Scholar
    26. Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends Neuroscience 12:349–353CrossRefGoogle Scholar
    27. White HS, Harmsworth WL, Sofia RD, Wof HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20:41–48PubMedCrossRefPubMedCentralGoogle Scholar

    [3H]strychnine-Sensitive Glycine Receptor

    1. Betz H, Kuhse J, Schmieden V, Laube B, Harvey R (1998) Structure, diversity and pathology of the inhibitory glycine receptor. Naunyn Schmiedeberg’s Arch Pharmacol 358(Suppl 2):R570Google Scholar
    2. Braestrup C, Nielsen M, Krogsgaard-Larsen P (1986) Glycine antagonists structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol inhibit binding of [3H]strychnine to rat brain membranes. J Neurochem 47:691–696PubMedCrossRefPubMedCentralGoogle Scholar
    3. Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol 126:303–307PubMedCrossRefPubMedCentralGoogle Scholar
    4. Bruns RF, Welbaum BEA (1985) A sodium chloride shift method to distinguish glycine agonists from antagonists in [3H]strychnine binding. Fed Proc 44:1828Google Scholar
    5. Graham D, Pfeiffer F, Simler R, Betz H (1985) Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry 24:990–994PubMedCrossRefPubMedCentralGoogle Scholar
    6. Johnson G, Nickell DG, Ortwine D, Drummond JT, Bruns RF, Welbaum BE (1989) Evaluation and synthesis of aminohydroxyisoxazoles and pyrazoles as potential glycine agonists. J Med Chem 32:2116–2128PubMedCrossRefPubMedCentralGoogle Scholar
    7. Johnson G, Drummond JT, Boxer PA, Bruns RF (1992) Proline analogues as agonists at the strychnine-sensitive glycine receptor. J Med Chem 35:233–241PubMedCrossRefPubMedCentralGoogle Scholar
    8. Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem 37:1015–1024PubMedCrossRefPubMedCentralGoogle Scholar
    9. Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. Neuroreport 5:777–780PubMedCrossRefPubMedCentralGoogle Scholar
    10. Marvizon JCG, Vázquez J, Calvo MG, Mayor F Jr, Gómez AR, Valdivieso F, Benavides J (1986) The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine binding sites. Mol Pharmacol 30:590–597PubMedPubMedCentralGoogle Scholar
    11. Saitoh T, Ishida M, Maruyama M, Shinozaki H (1994) A novel antagonist, phenylbenzene-ω-phosphono-a-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord. Br J Pharmacol 113:165–170PubMedPubMedCentralCrossRefGoogle Scholar
    12. Schmieden V, Jezequel S, Beth H (1996) Novel antagonists of the inhibitory glycine receptor derived from quinolinic acid compounds. Mol Pharmacol 48:919–927Google Scholar
    13. Simmonds MA, Turner JP (1985) Antagonism of inhibitory amino acids by the steroid derivative RU5135. Br J Pharmacol 84:631–635PubMedPubMedCentralCrossRefGoogle Scholar
    14. Young AB, Snyder SH (1974) Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: co-operativity of glycine interactions. Mol Pharmacol 10:790–809Google Scholar

    Electrical Recordings from Hippocampal Slices In Vitro

    1. Alger BE (1984) Hippocampus. Electrophysiological studies of epileptiform activity in vitro. In: Dingledine R (ed) Brain slices. Plenum Press, New York/London, pp 155–199CrossRefGoogle Scholar
    2. Alger BE, Nicoll RA (1982) Pharmacological evidence of two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141PubMedPubMedCentralCrossRefGoogle Scholar
    3. Alger BE, Dhanjal SS, Dingledine R, Garthwaite J, Henderson G, King GL, Lipton P, North A, Schwartzkroin PA, Sears TA, Segal M, Whittingham TS, Williams J (1984) Brain slice methods. In: Dingledine R (ed) Brain slices. Plenum Press, New York/London, pp 381–437Google Scholar
    4. Bernard C, Wheal HV (1995) Plasticity of AMP and NMDA receptor mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Res 21:95–107PubMedCrossRefPubMedCentralGoogle Scholar
    5. Bingmann D, Speckmann EJ (1986) Actions of pentylenetetrazol (PTZ) on CA3 neurons in hippocampal slices of guinea pigs. Exp Brain Res 64:94–104PubMedCrossRefPubMedCentralGoogle Scholar
    6. Blanton MG, Turco JJL, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Meth 30:203–210CrossRefGoogle Scholar
    7. Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80:111–114PubMedCrossRefPubMedCentralGoogle Scholar
    8. Crain SM (1972) Tissue culture models of epileptiform activity. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 291–316Google Scholar
    9. Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Meth 2:323–362CrossRefGoogle Scholar
    10. Fisher RS (1987) The hippocampal slice. Am J EEG Technol 27:1–14CrossRefGoogle Scholar
    11. Fisher RS, Alger BE (1984) Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice. J Neurosci 4:1312–1323PubMedCrossRefPubMedCentralGoogle Scholar
    12. Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res 295:127–136PubMedCrossRefPubMedCentralGoogle Scholar
    13. Gahwiler BH (1988) Organotypic cultures of neuronal tissue. Trends Neurol Sci 11:484–490CrossRefGoogle Scholar
    14. Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl-d-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84:381–391PubMedPubMedCentralCrossRefGoogle Scholar
    15. Langmoe IA, Andersen P (1981) The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers. In: Kerkut GA, Wheal HV (eds) Electrophysiology of isolated mammalian CNS preparations. Academic, London/New York, pp 51–105Google Scholar
    16. Liu FC, Takahashi H, Mc Kay RDG, Graybiel AM (1995) Dopaminergic regulation of transcription factor expression in organotypic cultures of developing striatum. J Neurosci 15:2367–2384PubMedCrossRefPubMedCentralGoogle Scholar
    17. Misgeld U (1992) Hippocampal slices. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley, New York, pp 41–44Google Scholar
    18. Mosfeldt Laursen A (1984) The contribution of in vitro studies to the understanding of epilepsy. Acta Neurol Scand 69:367–375PubMedCrossRefPubMedCentralGoogle Scholar
    19. Müller CM (1992) Extra- and intracellular voltage recording in the slice. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley, New York, pp 249–295Google Scholar
    20. Oh DJ, Dichter MA (1994) Effect of a γ-aminobutyric acid uptake inhibitor, NNC-711, on spontaneous postsynaptic currents in cultured rat hippocampal neurons: implications for antiepileptic drug development. Epilepsia 35:426–430PubMedCrossRefPubMedCentralGoogle Scholar
    21. Okada Y, Ozawa S (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Eur J Pharmacol 68:483–492PubMedCrossRefPubMedCentralGoogle Scholar
    22. Oliver AP, Hoffer BJ, Wyatt RJ (1977) The hippocampal slice: a model system for studying the pharmacology of seizures and for screening of anticonvulsant drugs. Epilepsia 18:543–548PubMedCrossRefPubMedCentralGoogle Scholar
    23. Pandanaboina MM, Sastry BR (1984) Rat neocortical slice preparation for electrophysiological and pharmacological studies. J Pharmacol Meth 11:177–186CrossRefGoogle Scholar
    24. Saltarelli MD, Lowenstein PR, Coyle JT (1987) Rapid in vitro modulation of [3H]hemicholinium-3 binding sites in rat striatal slices. Eur J Pharmacol 135:35–40PubMedCrossRefPubMedCentralGoogle Scholar
    25. Schlicker E, Fink K, Zentner J, Göthert M (1996) Presynaptic inhibitory serotonin autoreceptors in the human hippocampus. Naunyn Schmiedeberg’s Arch Pharmacol 354:393–396Google Scholar
    26. Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85:423–436PubMedCrossRefPubMedCentralGoogle Scholar
    27. Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose dependent actions on synaptic and membrane potentials. Neurosci Lett 23:55–60PubMedCrossRefPubMedCentralGoogle Scholar
    28. Skrede KK, Westgard RH (1971) The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res 35:589–659PubMedCrossRefPubMedCentralGoogle Scholar
    29. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Meth 37:173–182CrossRefGoogle Scholar
    30. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518PubMedCrossRefPubMedCentralGoogle Scholar
    31. Teyler TT (1980) Brain slice preparation: hippocampus. Brain Res Bull 5:391–340PubMedCrossRefPubMedCentralGoogle Scholar

    Electrical Recordings from Isolated Nerve Cells

    1. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425PubMedCrossRefPubMedCentralGoogle Scholar
    2. Chen Q-X, Stelzer A, Kay AR, Wong RKS (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 420:207–221PubMedPubMedCentralCrossRefGoogle Scholar
    3. Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108–15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232PubMedPubMedCentralCrossRefGoogle Scholar
    4. Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998) On the role of endogenous G-protein β γ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506:319–329PubMedPubMedCentralCrossRefGoogle Scholar
    5. Gola M, Niel JP (1993) Electrical and integrative properties of rabbit sympathetic neurons re-evaluated by patch-clamping non-dissociated cells. J Physiol 460:327–349PubMedPubMedCentralCrossRefGoogle Scholar
    6. Gola M, Niel JP, Bessone R, Fayolle R (1992) Single channel and whole cell recordings from non dissociated sympathetic neurones in rabbit coeliac ganglia. J Neurosci Meth 43:13–22CrossRefGoogle Scholar
    7. Gonzales F, Farbman AI, Gesteland RC (1985) Cell and explant culture of olfactory chemoreceptor cells. J Neurosci Meth 14:77–90CrossRefGoogle Scholar
    8. Jirikowski G, Reisert I, Pilgrim C (1981) Neuropeptides in dissociated cultures of hypothalamus and septum; quantification of immunoreactive neurons. Neurosci 6:1953–1960CrossRefGoogle Scholar
    9. Kay AR, Wong RKS (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Meth 16:227–238CrossRefGoogle Scholar
    10. McGivern JG, Patmore L, Sheridan RD (1995) Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage- dependent sodium currents in the neuroblastoma cell line, NIE-115. Br J Pharmacol 114:1738–1744PubMedPubMedCentralCrossRefGoogle Scholar
    11. McLarnon JG (1991) The recording of action potential currents as an assessment for drug actions on excitable cells. J Pharmacol Meth 26:105–111CrossRefGoogle Scholar
    12. McLarnon JG, Curry K (1990) Single channel properties of the N-methyl-d-aspartate receptor channel using NMDA and NMDA agonists: on-cell recordings. Exp Brain Res 82:82–88PubMedCrossRefPubMedCentralGoogle Scholar
    13. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802PubMedCrossRefPubMedCentralGoogle Scholar
    14. Sakmann B, Neher E (1983) Single channel recording. Plenum Press, New YorkGoogle Scholar
    15. Smith PA (1995) Methods for studying neurotransmitter transduction mechanisms. J Pharmacol Toxicol Meth 33:63–73CrossRefGoogle Scholar
    16. Stolc S (1994) Pyridoindole stobadine is a nonselective inhibitor of voltage-operated ion channels in rat sensory neurons. Gen Physiol Biophys 13:259–266PubMedPubMedCentralGoogle Scholar

    Isolated Neonatal Rat Spinal Cord

    1. Akagi H, Konishi S, Otsuka M, Yanagisawa M (1985) The role of substance P as a neurotransmitter in the reflexes of slow time courses in the neonatal rat spinal cord. Br J Pharmacol 84:663–673PubMedPubMedCentralCrossRefGoogle Scholar
    2. Bleakman D, Rusin KI, Chard PS, Glaum SR, Miller RJ (1992) Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 42:192–196PubMedPubMedCentralGoogle Scholar
    3. Boxall SJ, Thompson SWN, Dray A, Dickenson AH, Urban L (1996) Metabotropic glutamate receptor activation contribute to nociceptive reflex activity in the rat spinal cord in vitro. Neurosci 74:13–20CrossRefGoogle Scholar
    4. Dong X-W, Morin D, Feldman JL (1996) Multiple actions of 1S, 3R-ACPD in modulating endogenous synaptic transmission to spinal respiratory motoneurons. J Neurosci 16:4971–4982PubMedCrossRefPubMedCentralGoogle Scholar
    5. Evans RH, Francis AA, Jones AW, Smith DAS, Watkins JC (1982) The effects of a series of ω-phosphonic α-carboxylic amino acids on electrically evoked and excitant amino-acid-induced responses in isolated spinal cord preparations. Br J Pharmacol 75:65–75PubMedPubMedCentralCrossRefGoogle Scholar
    6. Faber ESL, Chambers JP, Brugger F, Evans RH (1997) Depression of A and C fibre-evoked segmental reflexes by morphine and clonidine in the in vitro spinal cord of the neonatal rat. Br J Pharmacol 120:1390–1396PubMedPubMedCentralCrossRefGoogle Scholar
    7. Guo JZ, Yoshioka K, Otsuka M (1998) Effects of a tachykinin NK3 receptor antagonist, SR 142801, studied in isolated neonatal spinal cord. Neuropeptides 32:537–542PubMedCrossRefPubMedCentralGoogle Scholar
    8. Ishida M, Shinozakai H (1991) Novel kainate derivatives: potent depolarizing actions on spinal motoneurons and dorsal root fibres in newborn rats. Br J Pharmacol 104:873–878PubMedPubMedCentralCrossRefGoogle Scholar
    9. Ishida M, Akagi H, Shimamoto K, Ohfune Y, Shinozaki H (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res 537:311–314PubMedCrossRefPubMedCentralGoogle Scholar
    10. Ishida M, Saitoh T, Shimamoto K, Ohfune Y, Shinozaki H (1993) A novel metabotropic glutamate receptor agonist: marked depression of monosynaptic excitation in the newborn rat isolated spinal cord. Br J Pharmacol 109:1169–1177PubMedPubMedCentralCrossRefGoogle Scholar
    11. Jane DE, Jones PLSJ, Pook PCK, Tse HW, Watkins JC (1994) Actions of two new antagonists showing selectivity for different subtypes of metabotropic glutamate receptor in the neonatal rat spinal cord. Br J Pharmacol 112:809–816CrossRefGoogle Scholar
    12. Kendig JJ, Savola MKT, Woodley SJ, Maze M (1991) α2-adrenoceptors inhibit a nociceptive response in neonatal rat spinal cord. Eur J Pharmacol 192:293–300PubMedCrossRefPubMedCentralGoogle Scholar
    13. King AE, Lopez-Garcia JA, Cumberbatch M (1992) Antagonism of synaptic potentials in ventral horn neurons by 6-cyano-7-nitroquninoxaline-2,3-dione: a study in the rat spinal cord in vitro. Br J Pharmacol 107:375–381PubMedPubMedCentralCrossRefGoogle Scholar
    14. Lev-Tov A, Pinco M (1992) In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. J Physiol 447:149–169PubMedPubMedCentralCrossRefGoogle Scholar
    15. Nussbaumer JC, Yanagisawa M, Otsuka M (1989) Pharmacologic properties of a C fibre response evoked by saphenous nerve stimulation in an isolated spinal cord-nerve preparation of the newborn rat. Br J Pharmacol 98:373–382PubMedPubMedCentralCrossRefGoogle Scholar
    16. Ohno Y, Warnick JE (1988) Effects of thyrotropin-releasing hormone on phencyclidine- and ketamine-induced spinal depression in neonatal rats. Neuropharmacology 27:1013–1018PubMedCrossRefPubMedCentralGoogle Scholar
    17. Ohno Y, Warnick JE (1990) Selective depression of the segmental polysynaptic reflex by phencyclidine and its analogs in the rat in vitro: interaction with N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 252:246–252PubMedPubMedCentralGoogle Scholar
    18. Otsuka M, Konishi S (1974) Electrophysiology of mammalian spinal cord in vitro. Nature 252:733–734PubMedCrossRefPubMedCentralGoogle Scholar
    19. Otsuka M, Yanagisawa M (1988) Effect of a tachykinin antagonist on a nociceptive reflex in the isolated spinal cord tail preparation of the newborn rat. J Physiol 395:255–270PubMedPubMedCentralCrossRefGoogle Scholar
    20. Pook P, Brugger F, Hawkins NS, Clark KC, Watkins JC, Evans RH (1993) A comparison of action of agonists and antagonists at non-NMDA receptors of C fibres and motoneurons of the immature rat spinal cord in vitro. Br J Pharmacol 108:179–184PubMedPubMedCentralCrossRefGoogle Scholar
    21. Shinozaki H, Ishida M, Shimamoto K, Ohfune Y (1989) Potent NMDA-like actions and potentiation of glutamate responses by conformational variants of a glutamate analogue in the rat spinal cord. Br J Pharmacol 98:1213–1224PubMedPubMedCentralCrossRefGoogle Scholar
    22. Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Meth 21:321–333CrossRefGoogle Scholar
    23. Thompson SWN, Gerber G, Sivilotti LG, Woolf CJ (1992) Long duration of ventral root potentials in the neonatal spinal cord in vitro: the effects of ionotropic and metabotropic excitatory amino acid receptor antagonists. Brain Res 595:87–97PubMedCrossRefPubMedCentralGoogle Scholar
    24. Woodley SJ, Kendig JJ (1991) Substance P and NMDA receptors mediate a slow nociceptive ventral root potential in neonatal rat spinal cord. Brain Res 559:17–22PubMedCrossRefPubMedCentralGoogle Scholar
    25. Yanagisawa M, Otsuka M, Konishi S, Akagi H, Folkers K, Rosell S (1982) A substance P antagonist inhibits a slow reflex response in the spinal cord of the newborn rat. Acta Physiol Scand 116:109–112PubMedCrossRefPubMedCentralGoogle Scholar
    26. Yanagisawa MT, Murakoshi T, Tamai S, Otsuka M (1985) Tailpinch method in vitro and the effect of some antinociceptive compounds. Eur J Pharmacol 106:231–239CrossRefGoogle Scholar
    27. Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemisected spinal cord in vitro. Br J Pharmacol 106:367–372PubMedCrossRefPubMedCentralGoogle Scholar

    Cell Culture of Neurons

    1. Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4, -7, and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 600:49–55PubMedCrossRefPubMedCentralGoogle Scholar
    2. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425PubMedCrossRefPubMedCentralGoogle Scholar
    3. Brewer GJ (1997) Isolation and culture of adult hippocampal neurons. J Neurosci Meth 71:143–155CrossRefGoogle Scholar
    4. Brewer GJ (1999) Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol 159:237–247PubMedCrossRefPubMedCentralGoogle Scholar
    5. Brewer GJ, Deshmane S, Ponnusamy E (1998) Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrate. J Neurosci Meth 85:13–20CrossRefGoogle Scholar
    6. Canals S, Casarejos MJ, Rodríguez-Martin E, de Bernardo S, Mena MA (2001) Neurotrophic and neurotoxic effects of nitric oxide on fetal midbrain cultures. J Neurochem 76:56–68PubMedCrossRefPubMedCentralGoogle Scholar
    7. Chaudieu I, Privat A (1999) Neuroprotection of cultured foetal rat hippocampal cells against glucose deprivation: are GABAergic neurons less vulnerable or more sensitive to TCP protection? Eur J Neurosci 11:2413–2321PubMedCrossRefPubMedCentralGoogle Scholar
    8. Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, DeSarro G (2013) CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 106(1–2):74–82PubMedCrossRefPubMedCentralGoogle Scholar
    9. Ehret A, Haaf A, Jeltsch H, Heinrich B, Feuerstein TJ, Jakisch R (2001) Modulation of electrically evoked acetylcholine release in cultured septal neurones. J Neurochem 76:555–564PubMedCrossRefPubMedCentralGoogle Scholar
    10. Flavin MP, Ho LT (1999) Propentofylline protects neurons in culture from death triggered by macrophage or microglia secretory products. J Neurosci Res 56:54–59PubMedCrossRefPubMedCentralGoogle Scholar
    11. Hampson RE, Mu J, Deadwyler SA (2000) Cannabinoid and kappa opioid receptors reduced potassium K current via activation of Gs proteins in cultured hippocampal neurons. J Neurophysiol 84:2356–2364PubMedCrossRefPubMedCentralGoogle Scholar
    12. Jirikowski G, Reisert I, Pilgrim Ch (1981) Neuropeptides in dissociated cultures of hypothalamus and septum: quantitation of immunoreactive neurons. Neuroscience 6:1953–1960CrossRefGoogle Scholar
    13. Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N (1998) Enhancement of neurotransmitter release induced by brain derived neurotrophic factor in cultured hippocampal neurons. J Neurosci 18:10231–10240PubMedCrossRefPubMedCentralGoogle Scholar
    14. López E, Arce C, Vicente S, Oset-Gasque MJ, González MP (2001) Nicotinic receptors mediate the release of amino acid neurotransmitters in cultured cortical neurons. Cereb Cortex 11:158–163PubMedCrossRefPubMedCentralGoogle Scholar
    15. May PC, Robison PM, Fuson KS (1999) Stereo selective neuroprotection by a novel 2,3-benzodiazepine non-competitive AMPA antagonist against non-NMDA receptor mediated excitotoxicity in primary rat hippocampal culture. Neurosci Lett 262:219–221PubMedCrossRefPubMedCentralGoogle Scholar
    16. Mitoma J, Ito M, Furuya S, Hirabayashi Y (1998) Bipotential roles of ceramide in the growth of hippocampal neurones: promotion of cell survival and dendritic outgrowth in dose and developmental stage-dependent manners. J Neurosci Res 51:712–722PubMedCrossRefPubMedCentralGoogle Scholar
    17. Noh K-M, Koh J-Y (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111:1–RC111:5Google Scholar
    18. Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V, Bock E, Lukanidin E (2000) Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275:41278–41286PubMedCrossRefPubMedCentralGoogle Scholar
    19. Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931PubMedCrossRefPubMedCentralGoogle Scholar
    20. Saluja I, Granneman JG, Skoff RP (2001) PPAR δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33:191–204PubMedCrossRefPubMedCentralGoogle Scholar
    21. Semkowa I, Wolz P, Krieglstein J (1998) Neuroprotective effect of 5-HT1A receptor agonist, Bay X 3702, demonstrated in vitro and in vivo. Eur J Pharmacol 359:251–260CrossRefGoogle Scholar
    22. Semkowa I, Häberlein C, Krieglstein J (1999) Ciliary neurotrophic factor protects hippocampal neurons from excitotoxic damage. Neurochem Int 35:1–10CrossRefGoogle Scholar
    23. Sinor JD, Du S, Venneti S, Blitzblau RC, Leszkiewicz DN, Rosenberg PA, Aizenman E (2000) NMDA and glutamate evoke excitotoxicity at distinct cellular locations in rat cortical neurones in vitro. J Neurosci 20:8831–8837PubMedCrossRefPubMedCentralGoogle Scholar
    24. Skaper SD, Facci L, Milani L, Leon A, Toffano G (1990) Culture and use of primary and clonal neural cells. In: Conn PM (ed) Methods in neuroscience, vol 2. Academic, San Diego, pp 17–33Google Scholar
    25. Skaper SD, Leon A, Facci L (1993) Basic fibroblast growth factor modulates sensitivity of cultured hippocampal pyramidal neurones to glutamate cytotoxicity: interaction with ganglioside GM1. Brain Res Dev Brain Res 71:1–8PubMedCrossRefPubMedCentralGoogle Scholar
    26. Skaper SD, Facci L, Kee WJ, Strijbös PJLM (2001) Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. J Neurochem 76:47–55PubMedCrossRefPubMedCentralGoogle Scholar
    27. Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868–871PubMedCrossRefPubMedCentralGoogle Scholar
    28. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedPubMedCentralCrossRefGoogle Scholar
    29. Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, Duchen MR (2001) Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 531:147–163PubMedPubMedCentralCrossRefGoogle Scholar
    30. Yamagishi S, Yamada M, Ishikawa Y, Matsumoto T, Ikeuchi T, Hatanaka H (2001) p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 276:5129–5133PubMedCrossRefPubMedCentralGoogle Scholar

In Vivo Methods

    Electroshock in Mice

    1. Cashin CH, Jackson H (1962) An apparatus for testing anticonvulsant drugs by electroshock seizures in mice. J Pharm Pharmacol 14:445–475CrossRefGoogle Scholar
    2. Kitano Y, Usui C, Takasuna K, Hirohashi M, Nomura M (1996) Increasing-current electroshock seizure test: a new method for assessment of anti- and pro-convulsant activities of drugs in mice. J Pharmacol Toxicol Meth 35:25–29CrossRefGoogle Scholar
    3. Löscher W, Stephens DN (1988) Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes different changes in the effects of GABA receptor stimulation. Epilepsy Res 2:253–259PubMedCrossRefPubMedCentralGoogle Scholar
    4. Rastogi SA, Ticku MK (1985) Involvement of a GABAergic mechanism in the anticonvulsant effect of phenobarbital against maximal electroshock-induced seizures in rats. Pharmacol Biochem Behav 222:141–146CrossRefGoogle Scholar
    5. Sohn YJ, Levitt B, Raines A (1970) Anticonvulsive properties of diphenylthiohydantoin. Arch int Pharmacodyn 188:284–289PubMedPubMedCentralGoogle Scholar
    6. Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 433–458Google Scholar
    7. Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330PubMedPubMedCentralGoogle Scholar
    8. Toman JEP (1964) Animal techniques for evaluating anticonvulsants. In: Nodin JH and Siegler PE (eds) Animal and clinical techniques in drug evaluation, vol 1. Year Book Medical Publishers, Chicago, pp 348–352Google Scholar
    9. Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 287–300CrossRefGoogle Scholar
    10. Turner RA (1965) Anticonvulsants. Academic, New York/London, pp 164–172Google Scholar
    11. Woodbury LA, Davenport VO (1952) Design and use of a new electroshock seizure apparatus and analysis of factors altering seizure threshold and pattern. Arch Int Pharmacodyn 92:97–107PubMedPubMedCentralGoogle Scholar

    Isoniazid-Induced Convulsions in Mice

    1. Hahn F, Oberdorf A (1960) Vergleichende Untersuchungen über die Krampfwirkung von Begrimid, Pentetrazol und Pikrotoxin. Arch Int Pharmacodyn 135:9–30Google Scholar
    2. Leander JD, Lawson RR, Ornstein PL, Zimmerman DM (1988) N-methyl-d-aspartic acid induced lethality in mice: selective antagonism by phencyclidine-like drugs. Brain Res 448:115–120PubMedCrossRefPubMedCentralGoogle Scholar
    3. Pollack GM, Shen DD (1985) A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J Pharmacol Meth 13:135–146CrossRefGoogle Scholar
    4. Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanism of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282PubMedCrossRefPubMedCentralGoogle Scholar
    5. Snead OC III (1988) γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 29:361–368PubMedCrossRefPubMedCentralGoogle Scholar
    6. Stone WE (1972) Systemic chemical convulsants and metabolic derangements. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 407–432Google Scholar
    7. Testa R, Graziani L, Graziani G (1983) Do different anticonvulsant tests provide the same information concerning the profiles of antiepileptic activity? Pharmacol Res Commun 15:765–774PubMedCrossRefPubMedCentralGoogle Scholar
    8. Toussi HR, Schatz RAS, Waszczak BL (1987) Suppression of methionine sulfoximine seizures by intranigral γ -vinyl GABA injection. Eur J Pharmacol 137:261–264PubMedCrossRefPubMedCentralGoogle Scholar
    9. Tursky WA, Cavalheiro EA, Coimbra C, da Penha BM, Ikonomidou-Turski C, Turski L (1987) Only certain antiepileptic drugs prevent seizures induced by pilocarpine. Brain Res Rev 12:281–305CrossRefGoogle Scholar

    Bicuculline Test in Rats

    1. Buckett WR (1981) Intravenous bicuculline test in mice: characterisation with GABAergig drugs. J Pharmacol Meth 5:35–41CrossRefGoogle Scholar
    2. Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:123–134CrossRefGoogle Scholar
    3. Czuczwar SJ, Frey HH, Löscher W (1985) Antagonism of N-methyl-d,l-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108:273–280PubMedCrossRefPubMedCentralGoogle Scholar
    4. Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 183–195Google Scholar
    5. Mecarelli O, de Feo MR, Rina MF, Ricci GF (1988) Effects of progabide on bicuculline-induced epileptic seizures in developing rats. Clin Neuropharmacol 11:443–453PubMedCrossRefPubMedCentralGoogle Scholar

    4-Aminopyridine-Induced Seizures in Mice

    1. Morales-Villagran A, Urena-Guerrero ME, Tapia R (1996) Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur J Pharmacol 305:87–93PubMedCrossRefPubMedCentralGoogle Scholar
    2. Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286Google Scholar
    3. Rutecki PA, Lebeda FJ, Johnston D (1987) 4-aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911–1924PubMedCrossRefPubMedCentralGoogle Scholar
    4. Schaefer EW Jr, Brunton RB, Cunningham DJ (1973) A summary of the acute toxicity of 4-aminopyridine to birds and mammals. Toxicol Appl Pharmacol 26:532–538CrossRefGoogle Scholar
    5. Yamaguchi SI, Rogawski MA (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 11:9–16PubMedCrossRefPubMedCentralGoogle Scholar

    3-Nitropropionic Acid-Induced Seizures in Mice

    1. Alston TA, Mela L, Bright HL (1977) 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci U S A 74:3767–3771PubMedPubMedCentralCrossRefGoogle Scholar
    2. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid – exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–398PubMedCrossRefPubMedCentralGoogle Scholar
    3. Urbańska EM, Blaszczak P, Saran T, Kleinrok Z, Turski WA (1998) Mitochondrial toxin 3-nitropropionic acid evokes seizures in mice. Eur J Pharmacol 359:55–58PubMedCrossRefPubMedCentralGoogle Scholar
    4. Urbańska EM, Blaszczak P, Saran T, Kleinrok Z, Turski WA (1999) AMPA/kainate-related mechanisms contribute to convulsant and proconvulsant effects of 3-nitropropionic acid. Eur J Pharmacol 370:251–256PubMedCrossRefPubMedCentralGoogle Scholar
    5. Zuchora B, Wielosz M, Urbańska EM (2005) Adenosine A1 receptors and the anticonvulsant potential of drugs effective in the model of 3-nitropropionic acid-induced seizures in mice. Eur Neuropsychopharmacol 15:85–93PubMedCrossRefPubMedCentralGoogle Scholar

    Epilepsy Induced by Focal Lesions

    1. Albe-Fessard D, Stutinsky F, Libouban S (1971) Atlas Stéréotaxique du Diencéphale du Rat Blanc. C.N.R.S, ParisGoogle Scholar
    2. Anderer P, Barbanoj MJ, Saletu B, Semlitsch HV (1993) Restriction to a limited set of EEG-target variables may lead to misinterpretation of pharmaco-EEG results. Neuropsychobiology 27:112–116PubMedCrossRefPubMedCentralGoogle Scholar
    3. Atsev E, Yosiphov T (1969) Changes in evoked perifocal electrical activity with an acute epileptogenic focus in cat’s cortex. Electroencephalogr Clin Neurophysiol 27:444PubMedCrossRefPubMedCentralGoogle Scholar
    4. Bernhard CG, Bohm E (1955) The action of local anaesthetics on experimental epilepsy in cats and monkeys. Br J Pharmacol 10:288–295Google Scholar
    5. Bernhard CG, Bohm E, Wiesel T (1956) On the evaluation of the anticonvulsive effect of local anaesthetics. Arch Int Pharmacodyn 108:392–407PubMedPubMedCentralGoogle Scholar
    6. Black RG, Abraham J, Ward AA Jr (1967) The preparation of tungstic acid gel and its use in the production of experimental epilepsy. Epilepsia 8:58–63PubMedCrossRefPubMedCentralGoogle Scholar
    7. Blum B, Liban E (1960) Experimental basotemporal epilepsy in the cat. Discrete epileptogenic lesions produced in the hippocampus or amygdala by tungstic acid. Neurology 10:546–554PubMedCrossRefPubMedCentralGoogle Scholar
    8. Campell AM, Holmes O (1984) Bicuculline epileptogenesis in the rat. Brain Res 323:239–246CrossRefGoogle Scholar
    9. Cavalheiro EA, Riche DA, Le Gal la Salle G (1982) Long term effects of intrahippocampal kainic acid injections in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53:581–589PubMedCrossRefPubMedCentralGoogle Scholar
    10. Daniels JC, Spehlman R (1973) The convulsant effect of topically applied atropine. Electroencephalogr Clin Neurophysiol 34:83–87PubMedCrossRefPubMedCentralGoogle Scholar
    11. Dow RS, Fernández-Guardiola A, Manni E (1962) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14:399–407PubMedCrossRefPubMedCentralGoogle Scholar
    12. Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol 30:377–390PubMedCrossRefPubMedCentralGoogle Scholar
    13. Feria-Velasco A, Olivares N, Rivas F, Velasco M, Velasco F (1980) Alumina cream-induced focal motor epilepsy in cats. Arch Neurol 37:287–290PubMedCrossRefPubMedCentralGoogle Scholar
    14. Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in the rat. Physiol Bohemosclov 16:272–277Google Scholar
    15. Hanna GR, Stalmaster RM (1973) Cortical epileptic lesions produced by freezing. Neurology 23:918–925PubMedCrossRefPubMedCentralGoogle Scholar
    16. Hawkins CA, Mellanby JH (1987) Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study. Epilepsia 28:431–444PubMedCrossRefPubMedCentralGoogle Scholar
    17. Karpiak SE, Graf L, Rapport MM (1976) Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 194:735–737PubMedCrossRefPubMedCentralGoogle Scholar
    18. Karpiak SE, Mahadik SP, Graf L, Rapport MM (1981) An immunological model of epilepsy: seizures induced by antibodies to GM1 ganglioside. Epilepsia 22:189–196PubMedCrossRefPubMedCentralGoogle Scholar
    19. Kopeloff LM, Barrera SE, Kopeloff N (1942) Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychiatry 98:881–902CrossRefGoogle Scholar
    20. Kopeloff L, Chusid JG, Kopeloff N (1955) Epilepsy in Maccaca mulatta after cortical or intracerebral alumina. Arch Neurol Psychiatr 74:523–526CrossRefGoogle Scholar
    21. Krupp E, Löscher W (1998) Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with convulsive seizure models. J Pharmacol Exp Ther 285:1137–1149PubMedPubMedCentralGoogle Scholar
    22. Lange SC, Neafsey EJ, Wyler AR (1980) Neuronal activity in chronic ferric chloride epileptic foci in cats and monkey. Epilepsia 21:251–254PubMedCrossRefPubMedCentralGoogle Scholar
    23. Loiseau H, Avaret N, Arrigoni E, Cohadon F (1987) The early phase of cryogenic lesions: an experimental model of seizures updated. Epilepsia 28:251–258PubMedCrossRefPubMedCentralGoogle Scholar
    24. Marsan CA (1972) Focal electrical stimulation. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 147–172Google Scholar
    25. Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exper Neurol 9:286–304CrossRefGoogle Scholar
    26. Mellanby J, Hawkins C, Mellanby H, Rawlins JNP, Impey ME (1984) Tetanus toxin as a tool for studying epilepsy. J Physiol Paris 79:207–215PubMedPubMedCentralGoogle Scholar
    27. Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24:169–176PubMedCrossRefPubMedCentralGoogle Scholar
    28. Racine RJ (1972) Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32:269–279PubMedCrossRefPubMedCentralGoogle Scholar
    29. Reid SA, Sypert GW, Boggs WM, Wilmore LJ (1979) Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exper Neurol 66:205–219CrossRefGoogle Scholar
    30. Remler MP, Marcussen WH (1986) Systemic focal epileptogenesis. Epilepsia 27:35–42PubMedCrossRefPubMedCentralGoogle Scholar
    31. Remler MP, Sigvardt K, Marcussen WH (1986) Pharmacological response of systemically derived focal epileptic lesions. Epilepsia 27:671–6777PubMedCrossRefPubMedCentralGoogle Scholar
    32. Stalmaster RM, Hanna GR (1972) Epileptic phenomena of cortical freezing in the cat: persistent multifocal effects of discrete superficial lesions. Epilepsia 13:313–324PubMedCrossRefPubMedCentralGoogle Scholar
    33. Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983) Cholinomimetics produce seizures and brain damage in rats. Experientia 39:1408–1411PubMedCrossRefPubMedCentralGoogle Scholar
    34. Walton NY, Treiman DM (1989) Phenobarbital treatment of status epilepticus in a rodent model. Epilepsy Res 4:216–222PubMedCrossRefPubMedCentralGoogle Scholar
    35. Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244CrossRefGoogle Scholar
    36. Ward AA Jr (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 13–35Google Scholar

    Kindled Rat Seizure Model

    1. Babington RG (1975) Antidepressives and the kindling effect. In: Fielding S, Lal H (eds) Industrial pharmacology. Antidepressants, vol II, pp 113–124Google Scholar
    2. Croucher MJ, Cotterell KL, Bradford HF (1996) Characterization of N-methyl-d-aspartate (NMDA)-induced kindling. Biochem Soc Transact 24:295SCrossRefGoogle Scholar
    3. Durmuller N, Craggs M, Meldrum BS (1994) The effect of the non-NMDA receptor antagonists GYKI 52446 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 17:167–174PubMedCrossRefPubMedCentralGoogle Scholar
    4. Ebert U, Löscher W (1999) Characterization of phenytoin-resistant kindled rats, a new model of drug-resistant epilepsy: influence of genetic factors. Epilepsy Res 33:217–226PubMedCrossRefPubMedCentralGoogle Scholar
    5. Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizures in the amygdala kindling model. Naunyn Schmiedeberg’s Arch Pharmacol 356:341–347CrossRefGoogle Scholar
    6. Girgis M (1981) Kindling as a model for limbic epilepsy. Neurosci 6:1695–1706CrossRefGoogle Scholar
    7. Gilbert ME (1994) The phenomenology of limbic kindling. Toxicol Industr Health 10:4–5Google Scholar
    8. Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021PubMedCrossRefPubMedCentralGoogle Scholar
    9. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330PubMedCrossRefPubMedCentralGoogle Scholar
    10. Goddard GV, Dragunow M, Maru E, Macleod EK (1986) Kindling and the forces that oppose it. In: Doane BK, Livingston KE (eds) The limbic system: functional organization and clinical disorders. Raven Press, New York, pp 95–108Google Scholar
    11. Heit MC, Schwark WS (1987) An efficient method for time course studies of antiepileptic drugs using the kindled rat seizure model. J Pharmacol Meth 18:319–325CrossRefGoogle Scholar
    12. Hoenack D, Loescher W (1989) Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: experiments with carbamazepine. Neuropharmacology 28:599–610CrossRefGoogle Scholar
    13. Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs, Chapter 12. In: Frey HH, Danz D (eds) Antiepileptic drugs. Springer, Heidelberg/New York/Tokyo, pp 283–339CrossRefGoogle Scholar
    14. Le Gal la Salle G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2. Raven Press, New York, pp 31–47Google Scholar
    15. Löscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 54:721–741PubMedCrossRefPubMedCentralGoogle Scholar
    16. Löscher W, Nolting B, Hönack D (1988) Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. Eur J Pharmacol 152:9–17PubMedCrossRefPubMedCentralGoogle Scholar
    17. Löscher W, Rundfeldt C, Honack D (1993) Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res 15:207–219PubMedCrossRefPubMedCentralGoogle Scholar
    18. Lothman EW, Salerno RA, Perlin JB, Kaiser DL (1988) Screening and characterization of anti-epileptic drugs with rapidly recurring hippocampal seizures in rats. Epilepsy Res 2:367–379PubMedCrossRefPubMedCentralGoogle Scholar
    19. Mason CR, Cooper RM (1972) A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13:663–674PubMedCrossRefPubMedCentralGoogle Scholar
    20. McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16(Suppl):S72–S76PubMedCrossRefPubMedCentralGoogle Scholar
    21. McNamara JO (1986) Kindling model of epilepsy, Chapter 14. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology. Basic mechanisms of the epilepsies. Molecular and cellular approaches, vol 44. Raven Press, New York, pp 303–318Google Scholar
    22. PeUegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotactic atlas of the brain, 2nd edn. Plenum Press, New YorkGoogle Scholar
    23. Pinel JPJ, Rovner LI (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exper Neurol 58:190–202CrossRefGoogle Scholar
    24. Racine R (1978) Kindling: the first decade. Neurosurgery 3:234–252PubMedCrossRefPubMedCentralGoogle Scholar
    25. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294PubMedCrossRefPubMedCentralGoogle Scholar
    26. Schmidt J (1990) Comparative studies on the anticonvulsant effectiveness of nootropic drugs in kindled rats. Biomed Biochim Acta 49:413–419PubMedPubMedCentralGoogle Scholar
    27. Suzuki K, Mori N, Kittaka H, Iwata Y, Osonoe K, Niwa SI (1996) Anticonvulsant action of metabotropic glutamate receptor agonists in kindled amygdala of rats. Neurosci Lett 204:41–44PubMedCrossRefPubMedCentralGoogle Scholar
    28. Wada JA (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34:387–395CrossRefGoogle Scholar
    29. Wada JKA, Osawa T (1976) Spontaneous recurrent seizure state induced by daily amygdaloid stimulation in Senegalese baboons (Papio papio). Neurol 22:273–286CrossRefGoogle Scholar
    30. Wada JA, Mizoguichi T, Osawa T (1978) Secondarily generalized convulsive seizures induced by daily amygdaloid stimulation in rhesus monkeys. Neurol 28:1026–1036CrossRefGoogle Scholar
    31. Wahnschaffe U, Loescher W (1990) Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. Eur J Pharmacol 186:157–167PubMedCrossRefPubMedCentralGoogle Scholar

    Posthypoxic Myoclonus in Rats

    1. Fahn S (1986) Posthypoxic action myoclonus: literature review update. Adv Neurol 43:157–169PubMedPubMedCentralGoogle Scholar
    2. Jaw SP, Hussong MJ, Matsumoto RR, Truong DD (1994) Involvement of 5-HT2 receptors in posthypoxic stimulus sensitive myoclonus in rats. Pharmacol Biochem Behav 49:129–131PubMedCrossRefPubMedCentralGoogle Scholar
    3. Jaw SP, Dang T, Truong DD (1995) Chronic treatments with 5-HT1A agonists attenuate posthypoxic myoclonus in rats. Pharmacol Biochem Behav 52:577–580PubMedCrossRefPubMedCentralGoogle Scholar
    4. Jaw SP, Nguyen B, Vuong QTV, Trinh TA, Nguyen M, Truong DD (1996) Effects of glutamate receptor antagonists in post-hypoxic myoclonus in rats. Brain Res Bull 40:163–166PubMedCrossRefPubMedCentralGoogle Scholar
    5. Lance JW (1968) Myoclonic jerks and falls: aetiology, classification and treatment. Med J Aust 1:113–119PubMedPubMedCentralGoogle Scholar
    6. Lance W, Adams RD (1963) The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain 86:111–136PubMedCrossRefPubMedCentralGoogle Scholar
    7. Truong DD, Matsumoto RR, Schwartz PH, Hussong MJ, Wasterlain CG (1994) Novel cardiac arrest model of posthypoxic myoclonus. Mov Disord 9:201–206PubMedCrossRefPubMedCentralGoogle Scholar

    Rat Kainate Model of Epilepsy

    1. Bardgett ME, Jackson JL, Taylor GT, Csernansky JG (1995) Kainic acid decreases hippocampal neuronal number and increases dopamine receptor binding in the nucleus accumbens: an animal model of schizophrenia. Behav Brain Res 70:153–164PubMedCrossRefPubMedCentralGoogle Scholar
    2. Bolanos AR, Sarkisian M, Yang Y, Hori A, Helmers SL, Mikati M, Tandon P, Stafstrom CE, Holmes GL (1998) Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 51:41–48PubMedCrossRefPubMedCentralGoogle Scholar
    3. Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehling A, LaSalles GLG (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729PubMedCrossRefPubMedCentralGoogle Scholar
    4. Cilio MR, Bolanos AR, Liu Z, Schmid R, Yang Y, Stafstrom CE, Mikati MA, Holmes GL (2001) Anticonvulsant action and long-term effects of gabapentin in the immature brain. Neuropharmacology 40:139–147PubMedCrossRefPubMedCentralGoogle Scholar
    5. Csernansky JG, Csernansky CA, Kogelman L, Montgomery EM, Bardgett ME (1998) Progressive neurodegeneration after intracerebroventricular kainic acid administration in rats: implications for schizophrenia? Biol Psychiatry 44:1143–1150PubMedCrossRefPubMedCentralGoogle Scholar
    6. Ebert U, Brandt C, Löscher W (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95PubMedCrossRefPubMedCentralGoogle Scholar
    7. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84PubMedCrossRefPubMedCentralGoogle Scholar
    8. Hu RQ, Koh S, Torgerson T, Cole AJ (1998) Neuronal stress and injury in C57/BL mice after systemic kainic acid administration. Brain Res 810:229–240PubMedCrossRefPubMedCentralGoogle Scholar
    9. Humphrey WM, Bardgett ME, Montgomery EM, Taylor GT, Csernanansky JG (2001) Methods for inducing neuronal loss in preweanling rats using intracerebroventricular infusion of kainic acid. Brain Res Prot 7:1–10CrossRefGoogle Scholar
    10. Longo BM, Mello LEAM (1998) Supragranular mossy fiber sprouting in rat is not necessary for spontaneous seizures in the intrahippocampal kainate model epilepsy in the rat. Epilepsy Res 32:172–182PubMedCrossRefPubMedCentralGoogle Scholar
    11. Madsen U, Stensbol TB, Krogsgaard-Larsen P (2001) Inhibitors of AMPA and kainate receptors. Curr Med Chem 8:1291–1301PubMedCrossRefPubMedCentralGoogle Scholar
    12. Maj R, Fariello RG, Ukmar G, Varasi M, Pevarello P, McArthur RA, Salvati P (1998) PNU-151774E protects against kainate-induced status epilepticus and hippocampal lesions in the rat. Eur J Pharmacol 359:27–32PubMedCrossRefPubMedCentralGoogle Scholar
    13. Pitkânen A, Nissinen J, Jolkkonen E, Tuunanan J, Halonen T (1999) Effects of vigabatrin treatment on status epilepticus induced neuronal damage and mossy fiber sprouting in the rat hippocampus. Epilepsy Res 33:67–85PubMedCrossRefPubMedCentralGoogle Scholar
    14. Tamagami H, Morimoto K, Watanabe T, Ninomiya T, Hirao T, Tanaka A, Kakumoto M (2004) Quantitative evaluation of central-type benzodiazepine receptors with [125I ]Iomazenil in experimental epileptogenesis. I. The rat kainate model of temporal lobe epilepsy. Epilepsy Res 61:105–112PubMedPubMedCentralGoogle Scholar

    Pilocarpine Model of Epilepsy

    1. André V, Ferrandon A, Marescaux C, Nehlig A (2001) Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res 47:99–117PubMedCrossRefPubMedCentralGoogle Scholar
    2. Arida RM, Sanabria ERG, da Silva AC, Faria LC, Scorza FA, Cavalheiro EA (2004) Physical training reverts hippocampal electrophysiological changes in rats submitted to the pilocarpine model of epilepsy. Physiol Behav 83:165–171PubMedCrossRefPubMedCentralGoogle Scholar
    3. Biagini G, Avoli M, Marcinkiewicz J, Marcinkiewicz M (2001) Brain-derived neurotrophic factor superinduction parallels anti-epileptic-neuroprotective treatment in the pilocarpine epilepsy model. J Neurochem 76:1814–1822PubMedCrossRefPubMedCentralGoogle Scholar
    4. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpin in rats: structural damages of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782PubMedCrossRefPubMedCentralGoogle Scholar
    5. Honchar MP, Olney JW, Sherman WR (1983) Systemic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325PubMedCrossRefPubMedCentralGoogle Scholar
    6. Hort J, Brozek G, Mares P, Langmeier M, Komarek V (1999) Cognitive functions after pilocarpine-induced status epilepticus: changes during silent period precede appearance of spontaneous recurrent seizures. Epilepsia 40:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
    7. Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu G (2002) Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 51:93–107PubMedCrossRefPubMedCentralGoogle Scholar
    8. Leite JP, Cavalheiro EA (1995) Effect of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20:93–104PubMedCrossRefPubMedCentralGoogle Scholar
    9. Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103PubMedCrossRefPubMedCentralGoogle Scholar
    10. Leroy C, Poisbeau P, Keller AF, Nehlig A (2004) Pharmacological plasticity of GABAA receptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. J Physiol Lond 557:473–487PubMedPubMedCentralCrossRefGoogle Scholar
    11. Löscher W (2002) Animal models for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123PubMedCrossRefPubMedCentralGoogle Scholar
    12. Lyon A, Marone S, Wainman D, Weaver DF (2004) Implementing a bioassay to screen molecules for antiepileptogenic activity. Chronic pilocarpine versus subdural haematoma models. Seizure 13:82–86PubMedCrossRefPubMedCentralGoogle Scholar
    13. Rigoulot MA, Koning E, Ferrandon A, Nehlig A (2004) Neuroprotective properties of topiramate in the lithium pilocarpine model of epilepsy. J Pharmacol Exp Ther 308:787–795PubMedCrossRefPubMedCentralGoogle Scholar
    14. Setkowicz Z, Ciarach M, Guzik R, Janeczko K (2004) Different effects of neuroprotectants FK-506 and cyclosporine a on susceptibility to pilocarpine-induced seizures in rats with brain injured at different developmental stages. Epilepsy Res 61:63–72PubMedCrossRefPubMedCentralGoogle Scholar
    15. Tang FR, Chia SC, Chen PM, Gao H, Lee WL, Yeo TS, Burgunder JM, Probst A, Sim MK, Ling EA (2004) Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res 59:167–180PubMedCrossRefPubMedCentralGoogle Scholar
    16. Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized nonconvulsive epilepsy. Neurosci Lett 33:97–101PubMedCrossRefPubMedCentralGoogle Scholar
    17. Wallace MJ, Blair RE, Falenski KW, Martin BR, Delorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307:129–137PubMedCrossRefPubMedCentralGoogle Scholar

    Self-Sustained Status Epilepticus

    1. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–227PubMedCrossRefPubMedCentralGoogle Scholar
    2. Brandt C, Glien M, Potschka H, Volk H, Löscher W (2003) Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res 55:83–103PubMedCrossRefPubMedCentralGoogle Scholar
    3. Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283PubMedPubMedCentralGoogle Scholar
    4. De Vasconcelos AP, Mazarati AM, Wasterlain CG, Nehlig A (1999) Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path. A 2-deoxyglucose study. Brain Res 838:110–118CrossRefGoogle Scholar
    5. Halonen T, Nissinen J, Jansen JA, Pitkänen A (1996) Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur J Pharmacol 299:69–81PubMedCrossRefPubMedCentralGoogle Scholar
    6. Halonen T, Nissinen J, Pitkänen A (1999) Neuroprotective effect of remacemide hydrochloride in a perforant pathway stimulation model of status epilepticus in the rat. Epilepsy Res 34:251–269PubMedCrossRefPubMedCentralGoogle Scholar
    7. Halonen T, Nissinen J, Pitkänen A (2001) Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment of rats. Epilepsy Res 46:205–223PubMedCrossRefPubMedCentralGoogle Scholar
    8. Laurén HB, Pitkänen A, Nissinen J, Soini SL, Korpi ER, Holopainen IE (2003) Selective changes in gammaaminobutyric acid type a receptor subunits in the hippocampus in spontaneously seizing rats with chronic temporal lobe epilepsy. Neurosci Lett 349:58–62PubMedCrossRefPubMedCentralGoogle Scholar
    9. Mazarati A, Liu H, Wasterlain C (1999) Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus. Neuroscience 89:167–173PubMedCrossRefPubMedCentralGoogle Scholar
    10. Mazarati AM, Baldwin R, Klitgaard H, Matagne A, Wasterlain CG (2004) Anticonvulsant effects of levetiracetam and levetiracetam-diazepam combination in experimental status epilepticus. Epilepsy Res 58:167–174PubMedCrossRefPubMedCentralGoogle Scholar
    11. Nissinen J, Halonen T, Koivisto E, Pitkänen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38:177–205PubMedCrossRefPubMedCentralGoogle Scholar
    12. Pitkänen A, Tuumanen J, Halonen T (1996) Vigabatrin and carbamazepine have different efficacies in the prevention of status epilepticus induced neuronal damage in the hippocampus and amygdala. Epilepsy Res 24:29–45PubMedCrossRefPubMedCentralGoogle Scholar
    13. Walton NY, Jaing Q, Hyun B, Treiman DM (1996) Lamotrigine vs. phenytoin for treatment of status epilepticus: comparison in an experimental model. Epilepsy Res 24:19–28PubMedCrossRefPubMedCentralGoogle Scholar

    Rat Model of Cortical Dysplasia

    1. Aicardi J (1994) The place of neuronal migration abnormalities in child neurology. Can J Neurol Sci 21:185–193PubMedCrossRefPubMedCentralGoogle Scholar
    2. Amano S, Ihara N, Umeura S (1996) Development of novel rat mutant with spontaneous limbic-like seizures. Am J Pathol 149:329–336Google Scholar
    3. Baraban SC, Schwartzkroin PA (1995) Electrophysiology of CA1 pyramidal neurons in an animal model of neuronal migration disorders: prenatal methylazoxymethanol treatment. Epilepsy Res 22:145–156PubMedCrossRefPubMedCentralGoogle Scholar
    4. Baraban SC, Schwartzkroin PA (1996) Flurothyl seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Epilepsy Res 23:189–194PubMedCrossRefPubMedCentralGoogle Scholar
    5. Baraban SC, Wenzel HJ, Hochman DW, Schwartzkroin PA (2000) Characterization of heterotopic cell clusters in the hippocampus of rats exposed to methylazoxymethanol in utero. Epilepsy Res 39:87–102PubMedCrossRefPubMedCentralGoogle Scholar
    6. Becker LE (1991) Synaptic dysgenesis. Can J Neurol Sci 18:170–180PubMedCrossRefPubMedCentralGoogle Scholar
    7. Benardete EA, Kriegstein AR (2002) Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 43:970–982PubMedCrossRefPubMedCentralGoogle Scholar
    8. Chevassus au Louis N, Baraban SC, Gaiarsa JL, Ben-Ari Y (1999) Cortical malformations and epilepsy: new insight from animal models. Epilepsia 40:811–821PubMedCrossRefPubMedCentralGoogle Scholar
    9. Germano IM, Sperber EF (1997) Increased seizure susceptibility in adult rats with neuronal migration disorders. Brain Res 777:219–222PubMedCrossRefPubMedCentralGoogle Scholar
    10. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet 19:333–339PubMedCrossRefPubMedCentralGoogle Scholar
    11. Jacobs KM (1996) Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 6:514–523PubMedCrossRefPubMedCentralGoogle Scholar
    12. Jacobs KM, Prince DA (2005) Excitatory and inhibitory polysynaptic currents in a rat model of epileptogenic microgyria. J Neurophysiol 93:687–696PubMedCrossRefPubMedCentralGoogle Scholar
    13. Jacobs KM, Hwang BJ, Pronce DA (1999) Focal epileptogensis in a rat model of polymicrogyria. J Neurophysiol 81:159–173PubMedCrossRefPubMedCentralGoogle Scholar
    14. Lee KS, Schottler F, Collins JL, Lanzino G, Couture D, Rao A, Hiramatsu KI, Goto Y, Hong SC, Caner H, Yamamoto H, Chen ZF, Bertram E, Berr S, Omary R, Scrable H, Jackson T, Goble J, Eisenman L (1997) A genetic animal model of human neocortical heterotypia associated with seizures. J Neurosci 17:6236–6242PubMedCrossRefPubMedCentralGoogle Scholar
    15. Leré C, el Bahh B, La Salle GLG, Rougier A (2002) A model of “epileptic tolerance” for investigating neuroprotection, epileptic susceptibility and gene expression-related plastic changes. Brain Res Prot 9:49–56CrossRefGoogle Scholar
    16. Morimoto K, Watanabe T, Ninomiya T, Hirao T, Tanaka A, Onishi T, Tamagami H (2004) Quantitative evaluation of central-type benzodiazepine receptors with [I125]Iomazenil in an experimental epileptogenesis: II. The rat cortical dysplasia model. Epilepsy Res 61:113–118PubMedCrossRefPubMedCentralGoogle Scholar
    17. Smyth MD, Barbaro NM, Baraban SC (2002) Effects of antiepileptic drugs on induced epileptiform activity in a rat model of dysplasia. Epilepsy Res 50:251–264PubMedCrossRefPubMedCentralGoogle Scholar
    18. Wenzel HJ, Robbins CA, Tsai LH, Schwartzkroin PA (2001) Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 21:983–998PubMedCrossRefPubMedCentralGoogle Scholar
    19. Zhu WJ, Roper SN (2000) Reduced inhibition in an animal model of cortical dysplasia. J Neurosci 20:8925–8931PubMedCrossRefPubMedCentralGoogle Scholar

    Genetic Animal Models of Epilepsy

    1. Amano S, Ihara N, Uemura S, Yokoyama M, Ikeda M, Serikawa T, Sasahara M, Kataoka H, Hayase Y, Hazama F (1996) Development of a novel rat mutant with spontaneous limbic-like seizures. Am J Pathol 149:329–336PubMedPubMedCentralGoogle Scholar
    2. Bartoszewicz ZP, Noronha AB, Fujita N, Sato S, Bo L, Trapp BD, Quarles RK (1995) Abnormal expression and glycosylation of the large and small isoforms of myelin associated glycoprotein in dymyelinating quaking mutants. J Neurosci Res 41:27–38PubMedCrossRefPubMedCentralGoogle Scholar
    3. Bartoszyk GD, Hamer M (1987) The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics. Pharmacol Res Commun 19:429–440PubMedCrossRefPubMedCentralGoogle Scholar
    4. Batini C, Teillet MA, Naquet R (2004) An avian model of genetic reflex epilepsy. Arch Ital Biol 142:297–312PubMedPubMedCentralGoogle Scholar
    5. Bouwman BM, van Rijn CM (2004) Effects of levetiracetam on spike and wave discharges in WAG/Rij rats. Seizure 13:591–594PubMedCrossRefPubMedCentralGoogle Scholar
    6. Budziszewska B, Van Luijtelaar G, Coenen AML, Leźniewicz M, Lasoń W (1999) Effects of neurosteroids on spike-wave discharges in the genetic epileptic WAG/RiJ rat. Epilepsy Res 33:23–29PubMedCrossRefPubMedCentralGoogle Scholar
    7. Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneim Forsch/Drug Res 34:1261–1264Google Scholar
    8. Chapman AG, Durmüller N, Harrison BL, Baron BM, Parvez N, Meldrum BS (1995) Anticonvulsant activity of a novel NMDA/glycine site antagonist, MDL 104,653, against kindled and sound-induced seizures. Eur J Pharmacol 274:83–88PubMedCrossRefPubMedCentralGoogle Scholar
    9. Coenen AM, Van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6):635–655PubMedCrossRefPubMedCentralGoogle Scholar
    10. Coenen AML, Drinkenburg WHIM, Inoue M, Van Luijtelaar ELJM (1992) Genetic models of absence epilepsy, with emphasis on the WAG/RiJ strain of rats. Epilepsy Res 12:75–86PubMedCrossRefPubMedCentralGoogle Scholar
    11. Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 347–372Google Scholar
    12. Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38:2411–2416PubMedPubMedCentralGoogle Scholar
    13. Crawford RD (1969) A new mutant causing epileptic seizures in domestic fowl. Poultry Sci 48:1799Google Scholar
    14. Crawford RD (1970) Epileptic seizures in domestic fowl.J Hered 61:185–188Google Scholar
    15. Cunningham JG (1971) Canine seizure disorders. J Am Vet Med Ass 158:589–598Google Scholar
    16. Dailey JW, Jobe PC (1985) Anticonvulsant drugs and the genetically epilepsy-prone rat. Fed Proc 44:2640–2644PubMedPubMedCentralGoogle Scholar
    17. Dailey JW, Yan QS, Adams-Curtis LE, Ryu JR, Ko KH, Mishra PK, Jobe PC (1996) Neurochemical correlation of antiepileptic drugs in the genetically epilepsy-prone rat. Life Sci 58:259–266PubMedCrossRefPubMedCentralGoogle Scholar
    18. Danober L, Depaulis A, Vergnes M, Marescaux C (1995) Mesopontine cholinergic control over generalized non-convulsive seizures in a genetic model of absence epilepsy in the rat. Neuroscience 69:1183–1193PubMedCrossRefPubMedCentralGoogle Scholar
    19. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57PubMedCrossRefPubMedCentralGoogle Scholar
    20. Depaulis A, David O, Charpier S (2016) The genetic absence epilepsy rats from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 260:159–175PubMedCrossRefPubMedCentralGoogle Scholar
    21. Deransart C, Riban V, Lê BT, Marescaux C, Depaulis A (2000) Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 100:335–344PubMedCrossRefPubMedCentralGoogle Scholar
    22. Dailey JW, Reigel CE, Mishra PK, Jobe PC (1989) Neurobiology of seizure predisposition in the genetically epilepsy prone rat. Epilepsy Res 3:3–17PubMedCrossRefPubMedCentralGoogle Scholar
    23. Di Pasquale E, Keegan KD, Noebels JL (1997) Increase excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mouse stargazer. J Neurophysiol 77:621–631PubMedCrossRefPubMedCentralGoogle Scholar
    24. Edmonds HL, Hegreberg GA, van Gelder NM, Sylvester DM, Clemmons RM, Chatburn CG (1979) Fed Proc 38:2424–2428PubMedPubMedCentralGoogle Scholar
    25. Faingold CL (1988) The genetically epilepsy-prone rat. Gen Pharmacol 19:331–338PubMedCrossRefPubMedCentralGoogle Scholar
    26. Faingold CL, Naritoku DK (1992) The genetically epilepsy prone rat: neuronal networks and actions of amino acid neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp 277–308Google Scholar
    27. Faingold CL, Randall ME, Boersma Anderson CA (1994) Blockade of GABA uptake with tiagabine inhibits audiogenic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 126:225–232PubMedCrossRefPubMedCentralGoogle Scholar
    28. Famula TR, Oberbauer AM, Brown KN (1997) Heritability of epileptic seizures in the Belgian tervueren. J Small Anim Pract 38:349–352PubMedCrossRefPubMedCentralGoogle Scholar
    29. Fletcher CF, Lutz CM, O’Sullivan TM, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel deficits. Cell 87:607–617PubMedCrossRefPubMedCentralGoogle Scholar
    30. Green MC, Sidman RL (1962) Tottering – a neuromuscular mutation in the mouse. J Hered 53:233–237PubMedCrossRefPubMedCentralGoogle Scholar
    31. Galvis-Alonzo OY, Cortes de Oliveira JA, Garcia-Cairasco N (2004) Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in Wistar audiogenic rats (WAR strain). Neuroscience 125:787–802CrossRefGoogle Scholar
    32. Green RC, Seyfried TN (1991) Kindling susceptibility and genetic seizure predisposition in inbred mice. Epilepsia 32:22–26PubMedCrossRefPubMedCentralGoogle Scholar
    33. Heckroth JA, Abbott LC (1994) Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 658:93–104PubMedCrossRefPubMedCentralGoogle Scholar
    34. Herrup K, Wilczynsnki SL (1982) Cerebellar cell degeneration in the leaner mutant mouse. Neurosci 7:2185–2196CrossRefGoogle Scholar
    35. Hogan EL (1977) Animals models of genetic disorders of myelin. In: Morell P (ed) Myelin. Plenum Press, New York, pp 489–520CrossRefGoogle Scholar
    36. Hosford DA, Lin FH, Wang Y, Caddick SJ, Rees M, Parkinson NJ, Barclay J, Cox RD, Gardiner RM, Hosford DA, Denton P, Wang Y, Seldin MF, Chan B (1999) Studies of the lethargic (Ih/lh) mouse model of absence seizures: regulatory mechanisms and identification of the gene. Adv Neurol 79:239–252PubMedPubMedCentralGoogle Scholar
    37. Iida K, Sasa M, Serikawa T, Noda A, Ishihara K, Akimitsu T, Hanaya R, Arita K, Kurisu K (1998) Induction of convulsive seizures by acoustic priming in a new genetically defined model of epilepsy (Noda epileptic rat: NER). Epilepsy Res 30:115–126PubMedCrossRefPubMedCentralGoogle Scholar
    38. Imaizumi K, Ito S, Kutukake G, Takizawa T, Fujiwara K, Tutikawa K (1959) Epilepsy like anomaly of mice. Exp Anim (Tokyo) 8:6–10CrossRefGoogle Scholar
    39. Jobe PC, Mishira PK, Dailey JW (1992) Genetically epilepsy prone rats: actions of antiepileptic drugs and monoaminergic neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp 253–275Google Scholar
    40. Jobe PC, Mishra PK, Adams-Curtis LE, Deoskar VU, Ko KH, Browning RA, Dailey JW (1995) The genetically epilepsy prone rat (GEPR). Ital J Neurol Sci 16:91–99PubMedCrossRefPubMedCentralGoogle Scholar
    41. Johnson DD, Davis HL, Crawford RD (1979) Pharmacological and biochemical studies in epileptic fowl. Fed Proc 38:2417–2423PubMedPubMedCentralGoogle Scholar
    42. Kato M (2016) Genes responsible for epileptic syndromes. Brain Nerve 68(2):159–164PubMedPubMedCentralGoogle Scholar
    43. Killam KF, Naquet R, Bert J (1966) Paroxysmal responses to intermittent light stimulation of a population of baboons (Papio papio). Epilepsia 7:215–219CrossRefGoogle Scholar
    44. Killam KF, Killam EK, Naquet R (1967) An animal model of light sensitivity epilepsy. Electroencephalogr Clin Neurophysiol 22:497–513PubMedCrossRefPubMedCentralGoogle Scholar
    45. Killam EK, Killam KF Jr (1984) Evidence for neurotransmitter abnormalities related to seizure activity in the epileptic baboon. Fed Proc 43:2510–2515PubMedPubMedCentralGoogle Scholar
    46. King JT Jr, LaMotte CC (1989) El mouse as a model of focal epilepsy. Epilepsia 30:257–265PubMedCrossRefPubMedCentralGoogle Scholar
    47. Ko KH, Dailey JW, Jobe PC (1982) Effect of increments of norepinephrine concentrations on seizure intensity in the genetically epilepsy-prone rat. J Pharmacol Exp Ther 222:662–669PubMedPubMedCentralGoogle Scholar
    48. Kuebler D, Tanouye MA (2000) Modification of seizure susceptibility in drosophila. J Neurophysiol 83:998–1009PubMedCrossRefPubMedCentralGoogle Scholar
    49. Kuebler D, Zhang H, Ren X, Tanouye MA (2001) Genetic suppression of seizure susceptibility in drosophila. J Neurophysiol 86:1211–1225PubMedCrossRefPubMedCentralGoogle Scholar
    50. Kurtz BS, Lehman J, Galick P, Amberg J, Mishra PK, Daikey JW, Weber R, Jobe PC (2001) Penetrance and expressivity of genes involved in the development of epilepsy in the genetically epilepsy-prone rat (GEPR). J Neurogenet 15:233–244PubMedCrossRefPubMedCentralGoogle Scholar
    51. Laird HE 2nd (1989) The genetically epilepsy-prone rat. A valuable model for the study of epilepsies. Mol Chem Neuropathol 11:45–59PubMedCrossRefPubMedCentralGoogle Scholar
    52. Lakaye B, Thomas E, Minet A, Grisar T (2002) The genetic absence epilepsy rat from Strasbourg (GAERS), a rat model of epilepsy: computer modeling and differential gene expression. Epilepsia 43(Suppl 5):123–129PubMedCrossRefPubMedCentralGoogle Scholar
    53. Lee RJ, Lomax P (1984) The effect of spontaneous seizures on pentylenetrazole and maximum electroshock induced seizures in the Mongolian gerbil. Eur J Pharmacol 106:91–98PubMedCrossRefPubMedCentralGoogle Scholar
    54. Lee RJ, Hong JS, McGinty JF, Lomax P (1987) Increased enkephalin and dynorphin immunoreactivity in the hippocampus of seizure sensitive Mongolian gerbils. Brain Res 401:353–358PubMedCrossRefPubMedCentralGoogle Scholar
    55. Letts VA, Mahaffey CL, Beyer B, Frankel WN (2005) A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proc Natl Acad Sci U S A 102:2123–2128PubMedPubMedCentralCrossRefGoogle Scholar
    56. Li W-X, Kuchler S, Zaepfel M, Badache A, Thomas D, Vincedon G, Baumann N, Zanetta JP (1993) Cerebellar soluble lectin and its glycoprotein ligands in the developing brain of control and dysmyelinating mutant mice. Neurochem Int 22:125–133PubMedCrossRefPubMedCentralGoogle Scholar
    57. Long S-M, Liang F-Y, Wu Q, Lu X-L, Yao X-L, Li S-C, Li J, Su H, Pang J-Y, Pei Z (2014) Identification of marine neuroactive molecules in behavior-based screens in the larval zebrafish. Mar Drugs 12(6): 3307–3322PubMedPubMedCentralCrossRefGoogle Scholar
    58. Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Meth Find Exp Clin Pharmacol 6:531–547Google Scholar
    59. Löscher W, Frey HH (1984) Evaluation of anticonvulsant drugs in gerbils with reflex epilepsy. Arzneim Forsch/Drug Res 34:1484–1488Google Scholar
    60. Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43:276–284PubMedPubMedCentralGoogle Scholar
    61. Löscher W, Fisher JE Jr, Schmidt D, Fredow G, Honack D, Iturrian WB (1989) The sz mutant hamster: a genetic model of epilepsy or of paroxysmal dystonia? Mov Disord 4:219–232PubMedCrossRefPubMedCentralGoogle Scholar
    62. Loskota WJ, Lomax P, Rich ST (1974) The gerbil as a model for the study of epilepsies. Epilepsia 15:109–119PubMedCrossRefPubMedCentralGoogle Scholar
    63. Magalhães LHM, Garcia-Cairasco N, Massensini AR, Doretto MC, Moraes MFD (2004) Evidence for augmented brainstem activated forebrain seizures in Wistar Audiogenic rats subjected to transauricular electroshock. Neurosci Lett 369:19–23PubMedCrossRefPubMedCentralGoogle Scholar
    64. Majkowski J, Kaplan H (1983) Value of Mongolian gerbils in antiepileptic drug evaluation. Epilepsia 24:609–615PubMedCrossRefPubMedCentralGoogle Scholar
    65. Mitrovic N, Le Saux R, Gioanni H, Gioanni Y, Besson MJ, Maurin Y (1992) Distribution of [3H]clonidine binding sites in the brain of the convulsive mutant quaking mouse: a radioautographic analysis. Brain Res 578:26–32PubMedCrossRefPubMedCentralGoogle Scholar
    66. Moraes MFD, Chavali M, Mishra PK, Jobe PC, Garcia-Cairasco N (2005) A comprehensive electrographic and behavioral analysis of generalized tonic-clonic seizures of GEPR-9s. Brain Res 1033:1–12PubMedCrossRefPubMedCentralGoogle Scholar
    67. Naquet R, Meldrum BS (1972) Photogenic seizures in baboon. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy – a manual for the laboratory worker. Raven Press, New York, pp 373–406Google Scholar
    68. Nehling A, Boehrer A (2003) Effects of remacemide in two models of genetically determined epilepsy, the GAERS and the audiogenic Wistar AS. Epilepsy Res 52:253–261CrossRefGoogle Scholar
    69. Nieh SE, Sherr EH (2014) Epileptic encephalopathies: new genes and new pathways. Neurotherapeutics 11(4):796–806PubMedCrossRefPubMedCentralGoogle Scholar
    70. Nikulina EM, Skrinskaya JA, Avgustinovich DF, Popova NK (1995) Dopaminergic brain system in the quaking mutant mouse. Pharmacol Biochem Behav 50:333–337PubMedCrossRefPubMedCentralGoogle Scholar
    71. Noda A, Hashizume R, Maihara T, Tomizawa Y, Ito Y, Inoue M, Kobayashi K, Asano Y, Sasa M, Serikawa T (1998) NER rat strain: a new type of genetic model in epilepsy research. Epilepsia 39:99–107PubMedCrossRefPubMedCentralGoogle Scholar
    72. Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38:2405–2410PubMedPubMedCentralGoogle Scholar
    73. Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336PubMedCrossRefPubMedCentralGoogle Scholar
    74. Noeberls JL, Qiao X, Bronson RT, Spencer C, Davisson MT (1990) Stargazer, a new neurological mutant in chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res 7:129–135Google Scholar
    75. Oberbauer AM, Grossmann DI, Irion DN, Schaffer AL, Eggleston ML, Famula TR (2003) The genetics of epilepsy in the Belgian tervuren and sheepdog. J Herd 94:57–63CrossRefGoogle Scholar
    76. Oguro K, Ito M, Tsuda H, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H (1991) Association of NMDA receptor sites and seizures E1 mice. Epilepsy Res 9:225–230PubMedCrossRefPubMedCentralGoogle Scholar
    77. Patel S, Chapman AG, Graham JL, Meldrum BS, Frey P (1990) Anticonvulsant activity of NMDA antagonists, D(−)4-(3-phosphonopropyl)piperazine-2-carboxylic acid (D-CPP) and D(−)(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Res 7:3–10PubMedCrossRefPubMedCentralGoogle Scholar
    78. Quesney LF (1984) Pathophysiology of generalized photosensitive epilepsy in the cat. Epilepsia 25:61–69PubMedCrossRefPubMedCentralGoogle Scholar
    79. Racine RJ, Steingart M, McIntyre DC (1999) Development of kindling-prone and kindling resistant rats: selective breeding and electrophysiological studies. Epilepsy Res 35:183–195PubMedCrossRefPubMedCentralGoogle Scholar
    80. Reigel CE, Dailey JW, Jobe PC (1986) The genetically epilepsy prone rat: an overview of seizure-prone characteristics and responsiveness to anticonvulsant drugs. Life Sci 39:763–774PubMedCrossRefPubMedCentralGoogle Scholar
    81. Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneously epileptic rat, a double mutant rat. Epilepsia 29:505–513PubMedCrossRefPubMedCentralGoogle Scholar
    82. Sarkisian MR, Rattan S, D’Mello SR, LoTurco LL (1999) Characterization of seizures in the flathead rat: a new genetic model in early postnatal development. Epilepsia 40:394–400PubMedCrossRefPubMedCentralGoogle Scholar
    83. Sarkisova KY, Midzianovskaia IS, Kulikov MA (2003) Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav Brain Res 144:211–226PubMedCrossRefPubMedCentralGoogle Scholar
    84. Scarlatelli-Lima AV, Magalhães LHM, Doretto MC, Moraes MFD (2003) Assessment of the seizure susceptibility of Wistar Audiogenic rat to electroshock, pentylenetetrazole and pilocarpine. Brain Res 960:184–189PubMedCrossRefPubMedCentralGoogle Scholar
    85. Seki T, Matsubayashi H, Amano T, Kitada K, Serikawa T, Sakai N, Sasa M (2002) Adenoviral gene transfer of aspartoacyclase into the tremor rat, a genetic model of epilepsy, as a trial of gene therapy for inherited epileptic disorder. Neurosci Lett 328:249–252PubMedCrossRefPubMedCentralGoogle Scholar
    86. Serikawa T, Yamada J (1986) Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered 77:441–444PubMedCrossRefPubMedCentralGoogle Scholar
    87. Serikawa T, Ohno Y, Sasa M, Yamada J, Takori S (1987) A new model of petit mal epilepsy: spontaneous spike and wave discharges in tremor rats. Lab Anim 21:68–71PubMedCrossRefPubMedCentralGoogle Scholar
    88. Serikawa T, Kogishi K, Yamada J, Ohno Y, Ujihara H, Fujita Y, Sasa M, Takaori S (1990) Long-term effects of continual intake of phenobarbital on the spontaneously epileptic rat. Epilepsia 31:9–14PubMedCrossRefPubMedCentralGoogle Scholar
    89. Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38:2399–2404PubMedPubMedCentralGoogle Scholar
    90. Seyfried TN, Glaser GH, Yu RK, Palayoor ST (1986) Inherited convulsive disorders in mice. Adv Neurol 44:115–133PubMedPubMedCentralGoogle Scholar
    91. Sidman M, Ray BA, Sidman RL, Klinger JM (1966) Hearing and vision in neurological mutant mice: a method for their evaluation. Exp Neurol 16:377–402PubMedCrossRefPubMedCentralGoogle Scholar
    92. Smith SE, Dürmüller N, Meldrum BS (1991) The non-N methyl-D-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 201:179–183PubMedCrossRefPubMedCentralGoogle Scholar
    93. Srenk P, Jaggy A, Gaillard C, Busato A, Horlin P (1994) Genetische Grundlagen der idiopathischen Epilepsie beim Golden Retriever. Tierärztl Praxis 22:574–578Google Scholar
    94. Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173:125–132PubMedPubMedCentralGoogle Scholar
    95. Stenger A, Boudou JL, Briley M (1991) Anticonvulsant effect of some anxiolytic drugs on two models of sound-induced seizures in mice. In: Briley M, File SE (eds) New concepts in anxiety. Macmillan Press, London, pp 326–331Google Scholar
    96. Suzuki J (2004) Investigations of epilepsy with a mutant animal (EL mouse) model. Epilepsia 45(Suppl 8):2–5PubMedCrossRefPubMedCentralGoogle Scholar
    97. Tacke U, Björk E, Tuomisto J (1984) The effect of changes in sound pressure level and frequency on the seizure response of audiogenic seizure susceptible rats. J Pharmacol Meth 11:279–290CrossRefGoogle Scholar
    98. Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213–223PubMedCrossRefPubMedCentralGoogle Scholar
    99. Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil (Meriones unguiculatus). Psycho Sci 11:227–228CrossRefGoogle Scholar
    100. Tsubota Y, Miyashita E, Miyajima M, Owada-Makabe K, Yukawa K, Maeda M (2003) The Wakayama epileptic rat (WER), a new mutant exhibiting tonic-clonic seizures and absence-like seizures. Exp Anim 52:53–62PubMedCrossRefPubMedCentralGoogle Scholar
    101. Ujihara H, Renming X, Sasa M, Ishihara K, Fujita Y, Yoshimura M, Kishimoto T, Serikawa T, Yamada J, Takaori S (1991) Inhibition by thyrotropin-releasing hormone of epileptic seizures in spontaneously epileptic rats. Eur J Pharmacol 196:15–19PubMedCrossRefPubMedCentralGoogle Scholar
    102. Van Luijtelaar ELJM, Coenen AML (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70:393–397PubMedCrossRefPubMedCentralGoogle Scholar
    103. Van Luijtelaar ELJM, Budziszewska B, Tetich M, Lasoń W (2003) Finasteride inhibits the progesterone-induced spike-wave discharges in a genetic model of absence epilepsy. Pharmacol Biochem Behav 75:889–894PubMedCrossRefPubMedCentralGoogle Scholar
    104. Van Luijtelaar G, Luttjohann A, Makorov VV, Maksimenko VA, Koronovskii AA, Hramov AE (2016) Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models. J Neurosci Methods 260:144–158PubMedCrossRefPubMedCentralGoogle Scholar
    105. Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclincal patterns in the rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33:97–101CrossRefGoogle Scholar
    106. Wang H, Burdette LJ, Frankel WN, Masukawa LM (1997) Paroxysmal discharges in the EL mouse, a genetic model of epilepsy. Brain Res 760:266–271PubMedCrossRefPubMedCentralGoogle Scholar
    107. Xie R, Fujita Y, Sasa M, Ishihara K, Ujihara H, Takaori S, Serikawa T, Jamada J (1990) Antiepileptic effect of CNK-602A, a TRH analogue, in the spontaneously epileptic rat (SER), a double mutant. Jap J Pharmacol 52(Suppl 1):290PGoogle Scholar
    108. Zhang HG, Tan J, Reynolds E, Kuebler D, Faulhaber S, Tanouye M (2002) The drosophila slamdance gene: a mutation in an aminopeptidase can cause seizures, paralysis and neuronal failure. Genetics 162:1283–1299PubMedPubMedCentralGoogle Scholar

    Transgenic Animals as Models of Epilepsy

    1. Allen KM, Walsh CA (1999) Genes that regulate neuronal migration in the cerebral cortex. Epilepsy Res 36:143–154PubMedCrossRefPubMedCentralGoogle Scholar
    2. Butler LS, Silva AJ, Abeliovich A, Watanabe Y, Tonegawa S, McNamara JO (1995) Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II α-subunit mutation. Proc Natl Acad Sci U S A 92:6852–6855PubMedPubMedCentralCrossRefGoogle Scholar
    3. Campbell KM, Veldman MB, McGrath MJ, Burton FJ (2000) TS + OCD-like neuropotentiated mice are supersensitive to seizure induction. Neuroreport 11:2335–2338PubMedCrossRefPubMedCentralGoogle Scholar
    4. Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2005) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144:5014–5021CrossRefGoogle Scholar
    5. Ferri AL, Cavallaro M, Braida D, Di-Christofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–3819PubMedCrossRefPubMedCentralGoogle Scholar
    6. Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F (2004) The role of epinephrine ion epilepsy: from the bench to the bedside. Neurosci Behav Rev 28:507–524CrossRefGoogle Scholar
    7. Hunanyan AS, Fainberg NA, Linabarger M, Arehart E, Leonard AS, Adil SM, Heiseth AR, Swearingen AK, Forbes SL, Rodriguiz RM, Rhodes T, Yao X, Kibbi N, Hochman DW, Wetsel WC, Hochgeschwender U, Mikati MA (2015) Knock-in mouse model of alternating hemiplegia of childhood: behavioral and electrophysiologic characterization. Epilepsia 56(1):82–93PubMedCrossRefPubMedCentralGoogle Scholar
    8. Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AR, Meisler MH (2001) A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102:307–317PubMedCrossRefPubMedCentralGoogle Scholar
    9. Knuesel I, Riban V, Zuellig RA, Schaub MC, Grady RM, Sanes JR, Fritschy JM (2002) Increase vulnerability to kainate-induced seizures in utrophin-knockout mice. Eur J Neurosci 15:1474–1484PubMedCrossRefPubMedCentralGoogle Scholar
    10. Kokaia M, Holmberg K, Nanobashvili A, Xu ZQD, Kokaia Z, Lendahl U, Hilke S, Theodorsson E, Kahl U, Bartfai T, Lindvall O, Hökfelt T (2001) Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin. Proc Natl Acad Sci U S A 98:14006–14011PubMedPubMedCentralCrossRefGoogle Scholar
    11. Kunieda T, Zuscik MJ, Boongird A, Perez DM, Luders HO, Najim IM (2002) Systemic overexpression of the alpha 1Badrenergic receptor in mice: an animal model of epilepsy. Epilepsia 43:1324–1329PubMedCrossRefPubMedCentralGoogle Scholar
    12. Lahteinen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E (2002) Decreased BDNF signaling in transgenic mice reduces epileptogenesis. Eur J Neurosci 15:721–734PubMedCrossRefPubMedCentralGoogle Scholar
    13. Lahteinen S, Pitkanen A, Koponen E, Saarelainen T, Castren E (2003) Exacerbated status epilepticus and acute cell loss, but no changes in epileptogenesis, in mice with increased brain-derived neurotrophic factor signaling. Neuroscience 122:1081–1092PubMedCrossRefPubMedCentralGoogle Scholar
    14. Lahteinen S, Pitkanen A, Knuuttila J, Toronen P, Castren E (2004) Brain-derived beurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. Eur J Neurosci 19:3245–3254PubMedCrossRefPubMedCentralGoogle Scholar
    15. Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570PubMedCrossRefPubMedCentralGoogle Scholar
    16. Ludwig A, Budde T, Stieber J, Moosmang S, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224PubMedPubMedCentralCrossRefGoogle Scholar
    17. Lüthi A, van der Putten H, Botteri FM, Mansuy IM, Meins M, Frey U, Sansig G, Portet C, Schmutz M, Schröder M, Nitsch C, Laurent JP, Monard D (1997) Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long-term potentiation. J Neurosci 17:4688–4699PubMedCrossRefPubMedCentralGoogle Scholar
    18. Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T (2004) Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GALR1) knockout mice. Neuroscience 128:431–441PubMedCrossRefPubMedCentralGoogle Scholar
    19. Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36:189–204PubMedCrossRefPubMedCentralGoogle Scholar
    20. Musumeci SA, Bosco B, Calabrese G, Bakker C, De-Sarro GB, Elia M, Ferri R, Oostra BA (2000) Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41:19–23PubMedCrossRefPubMedCentralGoogle Scholar
    21. Noebels JL (1999) Single-gene models of epilepsy. Adv Neurol 79:227–238PubMedPubMedCentralGoogle Scholar
    22. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8:51–60PubMedCrossRefPubMedCentralGoogle Scholar
    23. Potschka H, Krupp E, Ebert U, Gumbel C, Leichtlein C, Lorch B, Pickert A, Kramps S, Young K, Grune U, Keller A, Welschof M, Vogt G, Xiao B, Worley PF, Löscher W, Hiemisch H (2002) Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis. Eur J Neurosci 16:2157–2165PubMedCrossRefPubMedCentralGoogle Scholar
    24. Prasad AN, Prasad C, Stafstrom CE (1999) Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 40:1329–1352PubMedCrossRefPubMedCentralGoogle Scholar
    25. Schauwecker PE (2002) Complications associated with genetic background effects in models of experimental epilepsy. Prog Brain Res 135:139–148PubMedCrossRefPubMedCentralGoogle Scholar
    26. Shannon H, Yang L (2004) Seizure susceptibility of neuropeptide-Y null mutant mice in amygdale kindling and chemical-induced seizure models. Epilepsy Res 61:49–62PubMedCrossRefPubMedCentralGoogle Scholar
    27. Shimizu T, Ikegami T, Ogawara M, Suzuki Y, Takahashi M, Morio H, Shirasawa T (2002) Transgenic expression of the protein-L-isoaspartyl methyltransferase (PIMT) gene in the brain rescues mice from the fatal epilepsy of PIMT deficiency. J Neurosci Res 69:341–352PubMedCrossRefPubMedCentralGoogle Scholar
    28. Toth M, Tecott L (1999) Transgenic approaches to epilepsy. Adv Neurol 79:291–296PubMedPubMedCentral