Uricosuric and Hypo-Uricemic Activity

Living reference work entry

Abstract

Synthesis of uric acid primarily occurs in the liver, but the kidney has an important role in the pathophysiology of hyperuricemic syndromes. Because uric acid is poorly soluble, excessive amounts in the circulation may precipitate out into the tissues, particularly the joints, resulting in a painful arthropathy (“gout”). In humans, this condition is usually the result of faulty tubular transport of urate, resulting in increased net reabsorption. Attempts to treat hyperuricemia with tubular transport inhibitors (theoretically increasing urinary excretion of urate) frequently exacerbate the condition because tubular transport is bi-directional; reduction of net uric acid synthesis by the inhibition of xanthine oxidase is the preferred therapeutic approach. Furthermore, in renal hypoxic conditions, xanthine oxidase contributes to renal injury by the generation of oxygen free radicals and xanthine oxidase inhibition has been shown to be useful in such conditions (Shinosaki and Yonetani 1991; Rhoden et al. 2000; Terkeltaub et al. 2006).

Keywords

Uric Acid Xanthine Oxidase Brush Border Membrane Vesicle Uric Acid Excretion Urate Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

In Vitro Methods

  1. Heinz F, Reckel S (1983) Xanthine oxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol III, 3rd edn. Verlag Chemie Weinheim, Deerfield Beach/Basel, pp 211–216Google Scholar
  2. Rhoden E, Teloken C, Lucas M, Rhoden C, Mauri M, Zettler C, Bello-Klein A, Barros E (2000) Protective effect of allopurinol in the renal ischemia-reperfusion in uninephrectomized rats. Gen Pharmacol 35:189–193CrossRefPubMedGoogle Scholar
  3. Shinosaki T, Yonetani Y (1991) Hyperuricemia induced by the uricosuric drug probenecid in rats. Jpn J Pharmacol 55:461–468CrossRefPubMedGoogle Scholar
  4. Terkeltaub R, Bushinski DA, Becker MA (2006) Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapies. Arthritis Res Ther 8(Suppl 1):S4CrossRefPubMedCentralPubMedGoogle Scholar

Urate Uptake in Brush Border Membrane Vesicles

  1. Dan T, Koga H (1990) Uricosurics inhibit urate transporter in renal brush border membrane vesicles. Eur J Pharmacol 187:303–312CrossRefPubMedGoogle Scholar
  2. Dan T, Onuma E, Tanaka H, Koga H (1991) A selective uricosuric action of AA-193 in rats. Comparison with its effect on PAH secretion in vivo and in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 343:532–537CrossRefGoogle Scholar
  3. Kahn AM, Branham S, Weinman EJ (1983) Mechanism of urate and p-aminohippurate transport in rat microvillus membrane vesicle. Am J Physiol 245 (Renal Fluid Electrolyte Physiol 14):F151–158Google Scholar

In Vivo Methods

  1. Baker KM, Hook JB, Williamson HE (1965) Saluretic action of ethacrynic acid in the mouse. J Pharm Sci 54:1830CrossRefGoogle Scholar
  2. Fanelli GM (1976) Renal pharmacology. In: Martinez-Maldonado M (ed) Methods in pharmacology, Chap 9, vol 4A. Plenum, New York/London, pp 269–292Google Scholar
  3. Gutman AB, Yü TF (1961) A three-component system for regulation of renal excretion of uric acid in man. Trans Assoc Am Physicians 74:353–365PubMedGoogle Scholar
  4. Hill TWK, Randall PJ (1976) A method for screening diuretic agents in the mouse: an investigation of sexual differences. J Pharm Pharmacol 28:552–554CrossRefPubMedGoogle Scholar
  5. Sim MF, Hopcroft RH (1976) Effect of various diuretic agents in the mouse. J Pharm Pharmacol 28:609–612CrossRefPubMedGoogle Scholar

Hypouricemic Activity After Allantoxanamide Treatment in Rats

  1. Hropot M, Sörgel F, von Kerékjártó B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine metabolism in man – III A. Plenum, New York, pp 269–276Google Scholar
  2. Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: a new approach for evaluation antiuricopathic drugs. In: De Bruyn CHMM, Simmonds HA, Muller MM (eds) Purine metabolism in man – IV, part A. Plenum, New York, pp 175–178Google Scholar
  3. Johnson WJ, Chartrand A (1978) Allantoxanamide: a potent new uricase inhibitor in vivo. Life Sci 23:2239–2244CrossRefPubMedGoogle Scholar

Hypouricemic and Uricosuric Activity After Potassium Oxonate Treatment in Rats

  1. Bonardi G, Vidi A (1973) Action of 4-phenyl-1,2-diphenyl-3,5-pyrazolidinedione (DA 2370) on an experimental hyperuricosuria in the rat. Pharmacol Res Commun 5:125–129CrossRefGoogle Scholar
  2. Dan T, Yoneya T, Onoma M, Onuma E, Ozawa K (1994) Hypouricemic and uricosuric actions of AA-193 in a hyperuricemic rat model. Metabolism 43:123–128CrossRefPubMedGoogle Scholar
  3. Hropot M, Sörgel F, von Kerékjártó B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine metabolism in man – III A. Plenum, New York, pp 269–276Google Scholar
  4. Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: a new approach for evaluation antiuricopathic drugs. In: De Bruyn CHMM, Simmonds HA, Muller MM (eds) Purine metabolism in man – IV, part A. Plenum, New York, pp 175–178Google Scholar
  5. Johnson WJ, Stavric B, Chartrand A (1969) Uricase inhibition in the rat by s-triazines: an animal model for hyperuricemia and hyperuricosuria. Proc Soc Exp Biol Med 131:8–12CrossRefPubMedGoogle Scholar
  6. Kageyama N (1971) A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31:421–426CrossRefPubMedGoogle Scholar
  7. Musil J (1977) Physiological characteristics of various experimental models for the study of disorders in purine metabolism. In: Müller MM, Kaiser E, Seegmiller JE (eds) Purine metabolism in man II – physiology. Pharmacology and clinical aspects. Plenum, New York, pp 179–188Google Scholar
  8. Shinosaki S, Harada H, Yonetani Y (1991) Uricosuric property of a new diuretic compound, S-8666-S-(−)-enantiomer. Drug Dev Res 22:153–163CrossRefGoogle Scholar
  9. Stavric B, Clayman S, Gadd REA, Hébert D (1975) Some in vivo effects in the rat induced by chlorprothixene and potassium oxonate. Pharmacol Res Commun 7:117–124CrossRefPubMedGoogle Scholar
  10. Sugino H, Shimada H (1995) The uricosuric effect in rats of E5050, a new derivative of ethanolamine, involves inhibition of the tubular postsecretory reabsorption of urate. Jpn J Pharmacol 68:297–303CrossRefPubMedGoogle Scholar
  11. Yonetani Y, Ikawi K, Shinosaki T, Kawase-Hanafusa A, Harada H, van Es AA (1987) A new uricosuric diuretic, S-8666, in rats and chimpanzees. Jpn J Pharmacol 43:389–398Google Scholar

Phenol Red Excretion in Rats

  1. Kreppel E (1959) Der Einfluß einiger Phenylbutazonderivate auf den Phenolrotblutspiegel der Ratte. Med Exp 1:285–289PubMedGoogle Scholar
  2. Scarborough HC, McKinney GR (1962) Potential uricosuric agents derived from 1,3-diphenyl-barbituric acid. J Med Pharm Chem 5:175–183CrossRefPubMedGoogle Scholar
  3. Turner RA (1965) Uricosuric agents In: Screening methods in pharmacology, Chap 39. Academic, New York/London, pp 262–263Google Scholar

Uricosuric Activity in Dalmatian Dogs

  1. Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinez-Maldonado M (ed) Methods in pharmacology, vol 4A, Renal pharmacology, Chap 9, pp 269–292Google Scholar
  2. Friedman M, Byers SO (1948) Observations concerning the causes of the excess excretion of uric acid in the Dalmatian dog. J Biol Chem 175:727–735PubMedGoogle Scholar
  3. Hropot M, Klaus E, Seuring B, Lang HJ (1985) Effects of diuretics on magnesium excretion. Magnes Bull 7:20–24Google Scholar
  4. Kessler RH, Hierholzer K, Gurd RS (1959) Localization of urate transport in the nephron of mongrel and Dalmatian dog kidney. Am J Physiol 197:601–603PubMedGoogle Scholar
  5. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14:44–47Google Scholar
  6. Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given oxonic acid. Am J Physiol 220:973–979Google Scholar

Uricosuric Activity in Cebus Monkeys

  1. Dan T, Koga H, Onuma E, Tanaka H, Sato H, Aoki B (1989) The activity of AA-193, a new uricosuric agent in animals. Adv Exp Med Biol 253:301–308CrossRefGoogle Scholar
  2. Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinez-Maldonado M (ed) Methods in pharmacology, vol 4A, Renal pharmacology, Chap 9, pp 269–292Google Scholar
  3. Fanelli GM, Bohn D, Stafford SH (1970) Functional characteristics of renal urate transport in the Cebus monkey. Am J Physiol 218:627–636PubMedGoogle Scholar
  4. Hropot M (1988) Unpublished dataGoogle Scholar
  5. Onuma E, Tanaka H, Takahashi F, Tatsumi T, Akaike I, Koga H, Dan T (1988) Uricosuric effect of a new aryloxyacetic derivative (AA-193) in rats and Cebus monkeys. Jpn J Pharmacol 46(Suppl):Abst. P-250Google Scholar
  6. Yonetani Y, Ikawi K, Shinosaki T, Kawase-Hanafusa A, Harada H, van Es AA (1987) A new uricosuric diuretic, S-8666, in rats and chimpanzees. Jpn J Pharmacol 43:389–398Google Scholar
  7. Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given oxonic acid. Am J Physiol 220:973–979Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Non-Clinical Drug SafetyBoehringer Ingelheim Pharmaceuticals, IncRidgefieldUSA

Personalised recommendations