Physicochemical Properties

Abstract

Characterization of physicochemical properties attained strong interest in the pharmaceutical research area and is now a standard method. It is one of the key challenges to develop a pharmaceutical active ingredient into a drug, which combines biological activity with an appropriate physicochemical profile. Poor solubility in aqueous media is one of the major hurdles in the drug development process. Many promising drug candidates have failed simply due to inadequate solubility. The impact of solubility in drug discovery on biological assays, dosing and formulation, and intestinal absorption is discussed by Kerns et al. (2008).

Keywords

Partition Coefficient Drug Discovery Shake Flask Experiment Pharm Biomed Anal Oral Drug Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Abraham MM, Chadha HS, Dixon JP, Leo AJ (1994) Hydrogen bonding. Part 9. The partition of solutes between water and various alcohols. J Phys Org Chem 7:712–716CrossRefGoogle Scholar
  2. Allen RI, Box KJ, Comer J, Peake C, Tam KY (1998) Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J Pharm Biomed Anal 17:699PubMedCrossRefGoogle Scholar
  3. Alsenz J, Meister E, Haenel E (2007) Developlemt of a partially automated solubility screening (PASS) assay for early drug development. J Pharm Sci 96(7):1748–1762PubMedCrossRefGoogle Scholar
  4. Avdeef A (2001) High - throughput measurements of solubility profiles. Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies, [LogP2000, Lipophilicity Symposium], 2nd, Lausanne, Switzerland, Mar. 5-9, 2000Google Scholar
  5. Avdeef A, Bucher JJ (1978) Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal Chem 50(14):2137–2142CrossRefGoogle Scholar
  6. Avdeef A, Comer JEA, Thomson SJ (1993) pH-Metric Log P. 3. Glass electrode calibration in methanol-water applied to pKa determination of water insoluble substances by potentiometric titration. Anal Chem 65(1):42–49CrossRefGoogle Scholar
  7. Bevan CD (2000) A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal Chem 72:1781–1787PubMedCrossRefGoogle Scholar
  8. Box K, Bevan C, Comer C, Hill J, Allan A, Reynold R (2003) High throughput measurement of pKa values in a mixed-buffer linear pH gradient system. Anal Chem 75(4):883–892PubMedCrossRefGoogle Scholar
  9. Chen T-M, Shen H, Zhu C (2002) Evaluation of a method for high throughput solubility determination using a multi-wavelength UV plate reader. Comb Chem High Throughput Screen 5(7):575–581CrossRefGoogle Scholar
  10. Comer T, Box K (2003) High throughput measurement of drug pKa values for ADME screening. J Assoc Lab Autom 8(1):55–59CrossRefGoogle Scholar
  11. Comer J, Tam KY (2001) Lipophilicity profiles: theory and measurement. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research: biological, physicochemical and computational strategies. VHCA, Zurich, pp 275–304CrossRefGoogle Scholar
  12. Dehring KA, Workman HL, Miller KD, Mandagere A, Poole SK (2004) J Pharm Biomed Anal 36:447–456PubMedCrossRefGoogle Scholar
  13. Dohta Y, Yamashita T, Horiike S, Nakamura T, Kukami T (2007) Anal Chem 79:8312–8315PubMedCrossRefGoogle Scholar
  14. Dressman JB, Amidon GL, Reppas C, Shah VP (1998) Dissolution testing as a prognostic tool for oral drug absorption. Pharm Res 15(1):11–22PubMedCrossRefGoogle Scholar
  15. Gluck SJ, Cleveland JA (1994) Capillary zone electrophoresis for the determination of dissociation constants. J Chromatogr A 680:49–56CrossRefGoogle Scholar
  16. Green C, McKee S, Saunders K (2004) A fully automated Kinetic solubility screen in 384-well Plate format using nephelometry, BMG, Application Note 117, http://www.bmglabtech.com/templates/applications/applications_sub.cfm?application_category_id=11%26application_subcategory_ selected_id=27
  17. Guttman A, Varoglu M, Khandurina J (2004) Multidimensional separations in the pharmaceutical arena. Drug Discovery 9(3):136–144CrossRefGoogle Scholar
  18. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New YorkGoogle Scholar
  19. Henchoz Y, Bard B, Guillarme D, Carrupt P-A, Veuthey J-L, Martel S (2009) Analytical tools for the physicochemical profiling of drug candidates to predict absorption/distribution. Annal Bioannal Chem 394:707–729CrossRefGoogle Scholar
  20. Hitzel L, Watt AP, Locker KL (2000) An increase throughput method for the determination of partition coefficients. Pharm Res 17(11):1389–1395PubMedCrossRefGoogle Scholar
  21. Hongve D, Akesson G (1998) Comparison of nephelometric turbidity measurements using wavelengths 400–600 and 860. Water Res 32(10):3143–3145CrossRefGoogle Scholar
  22. Jander G, Blasius E (1995) Lehrbuch der analytischen und präparativen anorganischen Chemie 14. Auflage, S. Hirzel VerlagGoogle Scholar
  23. Jia Z, Ramstad T, Zhong M (2001) Medium-throughput pK a screening of pharmaceuticals by pressure-assisted capillary electrophoresis. Electrophoresis 22(6):1112–1118PubMedCrossRefGoogle Scholar
  24. Kerns EH, Di L, Carter GT (2008) In vitro solubility assays in drug discovery. Curr Drug Metab 9:879–885PubMedCrossRefGoogle Scholar
  25. Kerns EH (2001) High throughput physicochemical profiling for drug discovery. J Pharm Sci 90(11):1838–1858PubMedCrossRefGoogle Scholar
  26. Kibbey CE, Poole SK, Robinson B, Jackson JD, Durham D (2001) An integrated process for measuring the physicochemical properties of drug candidates in a preclinical discovery environment. J Pharm Sci 90(8):1164–1175PubMedCrossRefGoogle Scholar
  27. Law D, Kril SL, Schmitt EA, Fort JJ, Qiu Y, Wang W, Porter WR (2001) Physicochemical considerations in the preparation of amorphous ritonavir (poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci 90(8):1015–1024PubMedCrossRefGoogle Scholar
  28. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71(6):525–616CrossRefGoogle Scholar
  29. Lide DR, Frederikse HPP (1996) CRC handbook of chemistry and physics: special student edition, 77th edn. CRC Press, New YorkGoogle Scholar
  30. Lipinski CA, Franco L, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25CrossRefGoogle Scholar
  31. Lombardo F, Shalaeva MY, Tupper KA, Gao F, Abraham MH (2000) ElogPoct: a tool for lipophilicity determination in drug discovery. J Med Chem 43(15):2922–2928PubMedCrossRefGoogle Scholar
  32. Lunn G, Schmuff NR (1997) HPLC methods for pharmaceutical analysis. Wiley-Intersciences, New YorkGoogle Scholar
  33. Miller JM, Blackburn AC, Shi Y, Melzak AJ, Ando HY (2002) Semi-empirical relationships between effective mobility, charge, and molecular weight of pharmaceuticals by pressure-assisted capillary electrophoresis: applications in drug discovery. Electrophoresis 23:2833–2841PubMedCrossRefGoogle Scholar
  34. Minick DJ, Frenz JH, Patrick MA, Brent DA (1988) A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance chromatography. J Med Chem 31(10):1923–1933PubMedCrossRefGoogle Scholar
  35. Mirrlees MS, Moulton SJ, Murphy CT, Taylor P (1976) Direct measurement of octanol-water partition coefficients by high-pressure liquid chromatography. J Med Chem 19:615–619PubMedCrossRefGoogle Scholar
  36. OECD, Paris (1981) Test guideline 107, Decision of the council C(81) 30 final http://www.raell.demon.co.uk/chem/logp/logppka.html
  37. Pagliara A, Khamis E, Thrinh A, Carupt PA, Tsai RS, Testa B (1995) Structural properties governing retention mechanisms on RP-HPLC stationary phases used for lipophilicity measurements. J Liquid Chromatogr 18:1721–1745CrossRefGoogle Scholar
  38. Pan L, Ho Q, Tsutsui K, Takahashi L (2001) Comparison of chromatographic and spectroscopic methods used to rank compounds for aqueous solubility. J Pharm Sci 90(4):521–529PubMedCrossRefGoogle Scholar
  39. Rafols C, Fuguet E, Reta M, Gilbert C, Roses M, Bosch E (2008) Critical evaluation of buffering solutions for pKa determination by capillary electrophoresis. Electrophoresis 29(13):2841–2851PubMedGoogle Scholar
  40. Silveston R, Kronberg B (1994) Accurate measurements of solubility and thermodynamic transfer quantities using reversed-phase liquid-liquid chromatography. J Chrom 659(1):43–56CrossRefGoogle Scholar
  41. Sirius analytics: application and theory guide, http://www.sirius-analytical.com/books.htm
  42. Slater B, McCormack A, Avdeef A, Comer JEA (1994) pH-Metric log P. 4. Comparison of partition coefficients determined by Shake-Flask, HPLC, and potentiometric methods. J Pharmaceut Sci 83:1280–1283CrossRefGoogle Scholar
  43. Strasburg R, Franck E, Bastin A, Kenseth J (2003) High throughput determination of pKa values of compounds by multiplexed, absorbance-based, vacuum modulated capillary electrophoresis. In: HPCE 2003, San DiegoGoogle Scholar
  44. Tam KY, Takacs-Novak K (2001) Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal Chim Acta 434:157–167CrossRefGoogle Scholar
  45. Tam KY, Allen Ri, Box KJ, Comer JEA, Peake C (1998) Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J Pharm Biomed Anal 17:699–712PubMedCrossRefGoogle Scholar
  46. Taylor PJ (1990) In: Hansch C, Sammer G, Taylor JB (eds) Comprehensive medicinal chemistry, vol IV. Pergamon, Oxford, p 241Google Scholar
  47. TREGA, Bioscience, iDEA version 1.2, users guide, 9880 Campus Point drive, San DiegoGoogle Scholar
  48. Unger KK (ed) (1994) Handbuch der HPLC, Teil 1. GIT Verlag, DarmstadtGoogle Scholar
  49. Unger SH, Cooks JR, Hollenberg JS (1978) Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed-phase high-pressure liquid chromatography. J Pharm Sci 67:1364–1367PubMedCrossRefGoogle Scholar
  50. Valko K (2004) Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A 1037:299–310PubMedCrossRefGoogle Scholar
  51. Valko K, Bevan C, Reynolds D (1997) Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D. Anal Chem 69:2022PubMedCrossRefGoogle Scholar
  52. Van De Hulst HC (1981) Scattering and extinction experiments as a tool, Light scattering by small molecules. Wiley, New York, pp 381–428Google Scholar
  53. Waterbeemd H, Folkers G, Guy R (2001) Pharmacokinetic optimisation in drug research: biological, physicochemical and computational strategies. Zürich, SwitzerlandGoogle Scholar
  54. Zhou L, Yang L, Tilton S, Wang J (2007) Development of a high throughput equilibrium solubility assay using miniaturized shake-flask method in early drug discovery. J Pharm Sci 96(11):3052–3071PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sanofi Deutschland GmbHFrankfurt am MainGermany

Personalised recommendations