Advertisement

Alkaloids Derived from Histidine: Imidazole (Pilocarpine, Pilosine)

  • Ana Paula Santos
  • Paulo Roberto H. Moreno
Reference work entry

Abstract

This chapter will cover the alkaloids containing the imidazole nucleus which is the smallest group of alkaloids in terms of number of compounds known. This class of alkaloids is synthesized by precursors derived directly from the amino acid, l-histidine. The known structures can be divided in those derived from histamine as a precursor and the other ones called Pilocarpus alkaloids that contained a distinct precursor. The state of the art on the biosynthesis of these alkaloids, biotechnological approaches for their production, and their biological activity are also discussed.

Keywords

Biological activities Biosynthesis Cell culture Histidine derivatives Imidazole alkaloids Pilocarpus alkaloids Plant sources 

Abbreviations

13C NMR

13C Nuclear magnetic resonance

1H NMR

1H Nuclear magnetic resonance

2,4-D

2,4-Dichlorophenoxyacetic acid

BAP

6-Benzylaminopurine

CNS

Central nervous system

ESI-MS

Electron spray ionization – mass spectrometry

GA3

Gibberellin A3

HDC

Histidine decarboxylase

HPLC

High performance liquid chromatography

HPLC–ESI–MS/MS

High performance liquid chromatography with electrospray Ionization tandem mass spectrometry

HT

Histidine aminotransferase

IUPAC

International Union of Pure and Applied Chemistry

MS medium

Medium Murashige and Skoog

PEG

Polyethylene glycol

Notes

Acknowledgment

PRH Moreno is indebted to CNPq for the research grant.

References

  1. 1.
    Hesse M (2002) Alkaloids: nature’s curse or blessing? Wiley, New YorkGoogle Scholar
  2. 2.
    Vollhardt KP, Schore NE (2007) Organic chemistry: structure and function, 5th edn. Freeman, New: YorkGoogle Scholar
  3. 3.
    McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology (the “gold book”). Willey-Blackwell, Oxford. doi:10.1351/goldbook.P04890Google Scholar
  4. 4.
    Battersby AB, Openshaw HT (1953) The imidazole alkaloids. In: Manske RHF, Holmes HL (eds) The alkaloids: chemistry and physiology, vol 3. Academic, New York. doi:10.1016/S1876-0813(08)60142-6Google Scholar
  5. 5.
    Lewis JR (1985) Muscarine, imidazole, and peptide alkaloids and other miscellaneous alkaloids. Nat Prod Rep 2:245–248. doi:10.1039/NP9850200245CrossRefGoogle Scholar
  6. 6.
    Moret S, Smela D, Populin T, Conte LS (2005) A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem 89:355–361. doi:10.1016/j.foodchem.2004.02.050CrossRefGoogle Scholar
  7. 7.
    Appel W, Werle E (1959) Identification of histamine, N-dimethylhistamine, N-acetylhistamine and acetylcholine in Spinacia oleracea. Arzneimittel-Forsch 9:22–26Google Scholar
  8. 8.
    Maat L, Beyerman HC (1984) The imidazole alkaloids. In: Brossi A (ed) The alkaloids: chemistry and pharmacology, vol 22. Academic, New YorkGoogle Scholar
  9. 9.
    Lavizzari T, Veciana-Nogués MT, Weingart O, Bover-Cid S, Mariné-Font A, Vidal-Carou MC (2007) Occurrence of biogenic amines and polyamines in spinach and changes during storage under refrigeration. J Agric Food Chem 55:9514–9519. doi:10.1021/jf0713071CrossRefGoogle Scholar
  10. 10.
    Ferrigni NR, Nichols DE, Mclaughlin JL, Bye RA (1982) Cactus alkaloids XLVIII - N α, N α-dimethylhistamine, a hypotensive component of Echinocereus triglochidiatus. J Ethnopharmacol 5:359–364. doi:10.1016/0378-8741(82)90017-4CrossRefGoogle Scholar
  11. 11.
    Major R, Dursch F (1958) Nα, Nα-dimethylhistamine, hypotensive principle in Casimiroa edulis Llave et Lex. J Org Chem 23:1564–1565. doi:10.1021/jo01104a612CrossRefGoogle Scholar
  12. 12.
    Romero ML, Escobar LI, Lozoya X, Enriquez RG (1983) High-performance liquid chromatographic study of Casimiroa edulisI. Determination of imidazole derivatives and rutin in aqueous and organic extracts. J Chromatogr 281:245–251. doi:10.1016/S0021-9673(01)87882-1CrossRefGoogle Scholar
  13. 13.
    Rizvi SH, Kapil RS, Shoeb A (1985) Alkaloids and coumarins of Casimiroa edulis. J Nat Prod 48:146–146. doi:10.1021/np50037a032CrossRefGoogle Scholar
  14. 14.
    Rosenberg H, Paul AG (1969) Dolichotheline, a novel imidazole alkaloid from Dolichothele sphaerica. Tetrahedron Lett 13:1039–1042. doi:10.1016/S0040-4039(01)97731-7CrossRefGoogle Scholar
  15. 15.
    Rosenberg H, Paul AG (1970) The isolation and synthesis of dolichotheline. Phytochemistry 9:655–657. doi:10.1016/S0031-9422(00)85708-8CrossRefGoogle Scholar
  16. 16.
    Fitzgerald JS (1964) Alkaloids of the Australian Leguminosae IV-Cinnamoylhistamine, the alkaloid of Acacia argentea and A. polystacha. Aust J Chem 17:375–378CrossRefGoogle Scholar
  17. 17.
    Chiale CA, Cabrera JL, Juliani HR (1990) Nα-cinnamoylhistamine derivates from Lycium cestroides. Phytochemistry 29:688–689. doi:10.1016/0031-9422(90)85152-6CrossRefGoogle Scholar
  18. 18.
    Barboza GE, Cantero JJ, Núñez C, Pacciaroni A, Espinar LA (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34: 7–365. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-59622009000100002&lng=es&nrm=iso. Accessed 11 June 2012Google Scholar
  19. 19.
    Hikino H, Ogata M, Konno C (1983) Structure of feruloylhistamine, a hypotensive principle of Ephedra roots. Planta Med 48:108–110. doi:10.1055/s-2007-969900CrossRefGoogle Scholar
  20. 20.
    Hikino H, Kiso Y, Ogata M, Konno C, Aisaka K, Kubota H, Hirose N, Ishihara T (1984) Pharmacological actions of analogues of feruloylhistamine, an imidazole alkaloid of Ephedra roots. Planta Med 50:478–480. doi:10.1055/s-2007-969777 1CrossRefGoogle Scholar
  21. 21.
    Johns SR, Lambert JA (1967) New imidazole alkaloids from a Glochidion species (Family Euphorbiaceae). Aust J Chem 20:555–560CrossRefGoogle Scholar
  22. 22.
    Waterman PG, Faulkner DF (1981) Imidazole alkaloids from Cynometra hankei. Phytochemistry 20:2765–2767. doi:10.1016/0031-9422(81)85283-1CrossRefGoogle Scholar
  23. 23.
    Dewick PM (1997) Medicinal natural products: a biosynthetic approach. Wiley, New YorkGoogle Scholar
  24. 24.
    Jowett HAD (1900) Pilocarpine and the alkaloids of jaborandi leaves. J Chem Soc 77:473–499. doi:10.1039/ct9007700473CrossRefGoogle Scholar
  25. 25.
    Neville GA, Hasan FB, Smith ICD (1976) Stereoselective epimerization of pilocarpine in aqueous solution as determined by 13C nuclear magnetic resonance spectroscopy. Can J Chem 54:2094–2100. doi:10.1139/v76-300CrossRefGoogle Scholar
  26. 26.
    Döpke W, d’Heureuse G (1968) Zum mechanismus der pilocarpin-isomerisierung. Tetrahedron Lett 9(15):1807–1808. doi: 10.1016/S0040-4039(00)76369-6Google Scholar
  27. 27.
    Abreu IN, Mazzafera P, Eberlin MN, Zullo MAT, Sawaya ACHF (2007) Characterization of the variation in the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1205–1213. doi:10.1002/rcm.2942CrossRefGoogle Scholar
  28. 28.
    Sawaya ACHF, Abreu IN, Andreazza NL, Eberlin MN, Mazzafera P (2008) HPLC–ESI–MS/MS of imidazole alkaloids in Pilocarpus microphyllus. Molecules 13:1518–1529. doi:10.3390/molecules13071518CrossRefGoogle Scholar
  29. 29.
    Sawaya AHF, Vaz BG, Eberlin MN, Mazzafera P (2011) Screening species of Pilocarpus (Rutaceae) as sources of pilocarpine and other imidazole alkaloids. Genet Resour Crop Evol 58:471–480. doi:10.1007/s10722-011-9660-2CrossRefGoogle Scholar
  30. 30.
    Davies SG, Roberts PM, Stephenson PT, Storr HR, Thomson JE (2009) A practical and scalable total synthesis of the jaborandi alkaloid (+)-pilocarpine. Tetrahedron 65:8283–8296. doi:10.1016/j.tetlet.2009.03.021CrossRefGoogle Scholar
  31. 31.
    Shapiro G, Chengzhi C (1992) Asymmetric synthesis of (+)-pilosinine: a formal synthesis of (+)-pilocarpine. Tetrahedron Lett 33:2447–2450. doi:10.1016/S0040-4039(00)92211-1CrossRefGoogle Scholar
  32. 32.
    Andrade-Neto M, Mendes PH, Silveira ER (1996) An imidazole alkaloid and other constituents from Pilocarpus trachyllophus. Phytochemistry 42:885–887. doi:10.1016/0031-9422(95)00852-7CrossRefGoogle Scholar
  33. 33.
    de Souza RC, Fernandes JB, Vieira P, da Silva MFDF, Godoy MFP, Pagnocca FC, Bueno OC, Hebling MJA, Pirani JR (2005) A new imidazole alkaloid and other constituents from Pilocarpus grandiflorus and their antifungal activity. Z Naturforsh B 60:787–791Google Scholar
  34. 34.
    Tedeschi E, Kamionsky J, Fackler S, Sarel S (1973) The isolation of pure pilosine and epiisopilosine from leaves of Pilocarpus jaborandi. Israel J Chem 11:731–733Google Scholar
  35. 35.
    Voigtländer HW, Balsam G, Engelhardt M, Pohl L (1978) Epiisopiloturin, ein neues Pilocarpus-Alkaloid. Arch Pharm 3211:927–935. doi:10.1002/ardp. 19783111106CrossRefGoogle Scholar
  36. 36.
    Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66. doi:10.1146/annurev.arplant.52.1.29CrossRefGoogle Scholar
  37. 37.
    Verpoorte R, Memelink J (2002) Engineering secondary metabolites production in plants. Curr Oinp Plant Biol 13:181–187. doi:10.1016/S0958-1669(02)00308-7Google Scholar
  38. 38.
    Wink M (1987) Physiology of the accumulation of secondary metabolites with special reference to alkaloids. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetic of plants. Academic, New YorkGoogle Scholar
  39. 39.
    Brochmann-Hanssen E, Nunes MA, Olah CK (1975) On the biosynthesis of pilocarpine. Planta Med 28:1–5CrossRefGoogle Scholar
  40. 40.
    Santos AP (2004) Estabelecimento de culturas in vitro de Pilocarpus pennatifolius Lemmaire e otimização da produção do alcalóide pilocarpina. PhD Thesis, São Paulo UniversityGoogle Scholar
  41. 41.
    Abreu IN, Andreazza NL, Sawaya ACHF, Eberlin MN, Mazzafera P (2007) Cell suspension as a tool to study the biosynthesis of pilocarpine in jaborandi. Plant Biol 9:793–799. doi:10.1055/s-2007-965250CrossRefGoogle Scholar
  42. 42.
    Horan H, O’Donovan DG (1971) Biosynthesis of dolicotheline. J Chem Soc C: 2083–2085. doi: 10.1039/j39710002398Google Scholar
  43. 43.
    Horan H, O’Donovan DG (1968) The biosynthesis of lophocerine. J Chem Soc C: 2791–2795. doi: 10.1039/j39680002791Google Scholar
  44. 44.
    Rosenberg H, Stohs SJ, Paul AG (1974) Directed biosynthesis of unnatural alkaloids in Dolichothele sphaerica. Phytochemistry 13:823–827. doi:10.1016/S0031-9422(00)91146-4CrossRefGoogle Scholar
  45. 45.
    Rosenberg H, Paul AG (1973) Biosynthetic production of aberrant alkaloids in Dolichothele sphaerica (Cactaceae). J Pharm Sci 62(3):403–407. doi:10.1002/jps.2600620310CrossRefGoogle Scholar
  46. 46.
    Rosenberg H, Stohs SJ (1976) Effects of histidine decarboxylase inhibitors on the production of an aberrant alkaloid in Dolichothele sphaerica. Phytochemistry 15(4):501–503. doi:10.1016/S0031-9422(00)88956-6CrossRefGoogle Scholar
  47. 47.
    Constabel F (1987) Cell culture in phytochemistry. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 4. Academic, LondonGoogle Scholar
  48. 48.
    Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. doi:10.1007/s00253-009-2354-4CrossRefGoogle Scholar
  49. 49.
    Salles LA, Lopes SO, Zuanazzi JAS, Rech SB, Henriques AT (2004) Pilocarpine accumulation on Pilocarpus pennatifolius tissue culture. Br J Pharm Sci 40:437–439Google Scholar
  50. 50.
    Reuter G (1991) Process for the preparation of pilocarpine from in vitro cultures of Pilocarpus. USPTO 5(059):531Google Scholar
  51. 51.
    Courtois D, Petiard V, Touche A (1996) Pilocarpine production process. USPTO 5(569):593Google Scholar
  52. 52.
    Sabá RT, Lameira OA, Luz JMQ, Gomes AP, Innecco R (2002) Micropropagação do jaborandi. Hortic Bras 20:106–109. doi:10.1590/S0102-05362002000100021CrossRefGoogle Scholar
  53. 53.
    Avancini G, Abreu IN, Saldana MDA, Mohamed RS, Mazzafera P (2003) Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate. Phytochemistry 63:171–175. doi:10.1016/S0031-9422(03)00102-XCrossRefGoogle Scholar
  54. 54.
    Abreu IN, Sawaya ACHF, Eberlin MN, Mazzafera P (2005) Production of pilocarpine in callus of jaborandi (Pilocarpus microphyllus Staph.). In vitro Cell Dev Biol Plant 41:806–811. doi:10.1079/IVP2005711CrossRefGoogle Scholar
  55. 55.
    Abreu IN, Andreazza NL, Sawaya ACHF, Eberlin MN, Mazzafera P (2007) Cell suspension as a tool to study the biosynthesis of pilocarpine in jaborandi. Plant Biol 9:793–799CrossRefGoogle Scholar
  56. 56.
    Abreu IN, Andreazza NL, Sawaya ACHF, Eberlin MN, Mazzafera P (2009) Production of imidazole alkaloids in cell cultures of jaborandi as affected by the medium pH. Biotechnol Lett 31:607–614. doi:10.1055/s-2007-965250CrossRefGoogle Scholar
  57. 57.
    Peters LJ, Kovacic P (2009) Histamine: metabolism, physiology, and pathophysiology with applications in veterinary medicine. J Vet Emerg Crit Care 19:311–328. doi:10.1111/j.1476-4431.2009.00434.xCrossRefGoogle Scholar
  58. 58.
    Dale HH, Laidlaw PP (1910) The physiological action of beta-iminazolylethylamine. J Physiol 41:318–344Google Scholar
  59. 59.
    Figueroa K, Shankley N (2010) One hundred years of histamine research. In: Thurmond RL (ed) Histamine in inflammation. Springer, New York. doi:10.1007/978-1-4419-8056-4_1Google Scholar
  60. 60.
    Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196Google Scholar
  61. 61.
    Simons FER, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128:1139–1150.e4. doi:10.1016/j.jaci.2011.09.005CrossRefGoogle Scholar
  62. 62.
    Schultes RE (1969) Hallucinogens of plant origin. Science 163:245–254CrossRefGoogle Scholar
  63. 63.
    Packer M, Brandt JD (1992) Ophthalmology’s botanical heritage. Surv Ophthalmol 36:357–365. doi:10.1016/0039-6257(92)90113-8CrossRefGoogle Scholar
  64. 64.
    Brubaker RF (2003) Targeting outflow facility in glaucoma management. Surv Ophthalmol 48:S17–S20. doi:10.1016/S0039-6257(03)00003-1CrossRefGoogle Scholar
  65. 65.
    Bossola M, Tazza L (2012) Xerostomia in patients on chronic hemodialysis. Nat Rev Nephrol 8:176–182. doi:10.1038/nrneph.2011.218CrossRefGoogle Scholar
  66. 66.
    Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78:983–991. doi:10.1016/j.ijrobp. 2010.06.052CrossRefGoogle Scholar
  67. 67.
    Fox RI, Stern M, Michelson P (2000) Update in Sjogren syndrome. Curr Opin Rheumatol 12:391–398. doi:10.1097/00002281-200009000-00007CrossRefGoogle Scholar
  68. 68.
    Mavragani CP, Moutsopoulos HM (2007) Conventional therapy of Sjogren’s syndrome. Clin Rev Allergy Immunol 32:284–291. doi:10.1007/s12016-007-8008-3CrossRefGoogle Scholar
  69. 69.
    Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171. doi:10.1002/syn.890030207CrossRefGoogle Scholar
  70. 70.
    O’Dell CM, Das A, Wallace G, Ray SK, Banik NL (2012) Understanding the basic mechanisms underlying seizures in mesial temporal lobe epilepsy and possible therapeutic targets: a review. J Neurosci Res 90:913–924. doi:10.1002/jnr.22829CrossRefGoogle Scholar
  71. 71.
    Drake MV, O’Donnell JJ, Polansky JR (1986) Isopilocarpine binding to muscarinic cholinergic receptors. J Pharm Sci 75:278–279. doi:10.1002/jps.2600750315CrossRefGoogle Scholar
  72. 72.
    Veras ML, Guimaraes MA, Campelo YD, Vieira MM, Nascimento C, Lima DF, Vasconcelos L, Nakano E, Kuckelhaus SS, Batista MC, Leite JR, Moraes J (2012) Activity of Epiisopiloturine against Schistosoma mansoni. Curr Med Chem 19:2051–2058. doi:10.2174/092986712800167347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto Federal de Educação, Ciência e Tecnologia de São PauloCapivari-SPBrazil
  2. 2.Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade de São PauloSão Paulo-SPBrazil

Personalised recommendations