Alkaloids Derived from Tyrosine: Modified Benzyltetrahydroisoquinoline Alkaloids

  • Feroz Khan
  • Tabish Qidwai
  • Rakesh K. Shukla
  • Vikrant Gupta
Reference work entry


Secondary metabolites are produced by plants in response to biotic or abiotic interactions with their environment and confer protection through a variety of antimicrobial, pesticidal, and pharmacological properties. Alkaloids are a class of plant secondary metabolites that traditionally have been classified as basic compounds derived from amino acids that contain one or more heterocyclic nitrogen atom. About 20 % of plant species accumulate alkaloids, which are mostly derived from amino acids, e.g., phenylalanine, tyrosine, tryptophan, and lysine. The alkaloids are popular for their medicinal importance. The pharmaceutically important representatives of secondary metabolites are mostly alkaloids derived from tyrosine. In this chapter, we summarized the prior information, basic knowledge about the alkaloids, origin, physicochemical properties, uses, classification, biosynthetic reactions, and distribution of tyrosine-derived alkaloids especially opium alkaloids and their biosynthetic pathways in plants. We have also reviewed different web resources related to alkaloids and secondary metabolic pathway databases such as KEGG.


Anticancer antimalarial classification of alkaloids isoquinoline alkaloids KEGG tyrosine alkaloid biosynthesis 



Benzylisoquinoline alkaloids




Codeinone reductase


Cytochrome P


Dihydroxy phenylalanine


Kyoto Encyclopedia of Genes and Genomes




(S)-norcoclaurine synthase


(R,S)-reticuline 7-O-methyltransferase


Salutaridine reductase


Short-chain dehydrogenase/reductase


Tyrosine decarboxylase




  1. 1.
    De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 25(4):168–173CrossRefGoogle Scholar
  2. 2.
    Dewick PM (1997) Medicinal natural product, A biosynthetic approach, 2nd edn. Wiley, Cheschister, p 466Google Scholar
  3. 3.
    Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784CrossRefGoogle Scholar
  4. 4.
    Niemüller D, Reimann A, Ober D (2012) Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the Boraginales. Plant Physiol Preview. doi:10.1104/pp. 112.195024Google Scholar
  5. 5.
    Kutchan TM (1995) Alkaloid biosynthesis -the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070Google Scholar
  6. 6.
    Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16(3):363–375CrossRefGoogle Scholar
  7. 7.
    Wallwey C, Li SM (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 3:496–510CrossRefGoogle Scholar
  8. 8.
    Cordell GA (2012) Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry. Available online 19 June 2012Google Scholar
  9. 9.
    Krohn K, Cludius-Brandt S, Schulz B, Sreelekha M, Shafi PM (2011) Isolation, structure elucidation, and biological activity of a new alkaloid from Zanthoxylum rhetsa. Nat Prod Commun 11:1595–6Google Scholar
  10. 10.
    Kumar R, Khan S, Chauhan PM (2011) 2-Aminoimidazole, glycociamidine and 2-thiohydantoin-marine alkaloids as molecular inspirations for the development of lead structures. Curr Drug Targets 12(11):1689–1708CrossRefGoogle Scholar
  11. 11.
    Hegnauer R (1963) The taxonomic significance of alkaloids. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, pp 389–399Google Scholar
  12. 12.
    Price JR (1963) The distribution of alkaloids in the Rutaceae. In: Chemical plant taxonomy. Academic Press, New York, pp 429–452Google Scholar
  13. 13.
    Parsons AF, Palframan MJ (2010) Erythrina and related alkaloids. Alkaloids Chem Biol 68:39–81CrossRefGoogle Scholar
  14. 14.
    Ober D, Kaltenegger E (2009) Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant. Secondary metabolism. Phytochemistry 70(15–16):1687–95CrossRefGoogle Scholar
  15. 15.
    Langel D, Ober D (2011) Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry 72(13):1576–84CrossRefGoogle Scholar
  16. 16.
    Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature & classification. Plant Mol Biol 36(1):1–10CrossRefGoogle Scholar
  17. 17.
    Ikezawa N, Iwasa K, Sato F (2009) CYP719A subfamily of cytochrome P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia californica. Plant Cell Rep 28(1):123–133CrossRefGoogle Scholar
  18. 18.
    Pienkny S, Brandt W, Schmidt J, Kramell R, Ziegler J (2009) Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J 60(1):56–67CrossRefGoogle Scholar
  19. 19.
    Mishra S, Meena A, Singh S, Yadav DK, Khan F, Shukla RK (2010) Detection of substrate binding motifs for morphine biosynthetic pathway intermediates in novel wound inducible (R,S)-reticuline 7-O-methyltransferase of Papaver somniferum. In: Proceedings of international symposium on current status and opportunities in Aromatic & Medicinal Plants (AROMED), CIMAP (CSIR), Lucknow, India, 21–24 Feb 2010, Session I: P-25, p 51Google Scholar
  20. 20.
    Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM (2003) (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of P. somniferum – cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36(6):808–819CrossRefGoogle Scholar
  21. 21.
    Ginsburg H, Deharo E (2011) A call for using natural compounds in the development of new antimalarial treatments–an introduction. Malar J 2011(10):S1CrossRefGoogle Scholar
  22. 22.
    World Health Organization (WHO) (2010). Global report on antimalarial efficacy and drug resistance: 2000–2010. WHO, Geneva. Accessed on 24 Feb 2011
  23. 23.
    Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG. The potential of secondary metabolites from plants as drugs or leads again Oliveira CA, Sa NMH, Gomes EA, Marriel IE, Scotti MR, Guimaraes CT, Schaffert RE, Alves, VMC (2009) Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis(DGGE). Appl Soil Ecol 41(3):249–258.Google Scholar
  24. 24.
    Bharate SB, Manda S, Mupparapu N, Battini N, Vishwakarma RA (2012) Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor. mini. Rev Med Chem 12(7):650–664CrossRefGoogle Scholar
  25. 25.
    Calderon-Garcidueñas L, Torres-Jardon R (2012) Air pollution, socioeconomic status, and children’s cognition in megacities: the Mexico City scenario. Front Psychol 3:217. doi:10.3389/fpsyg.2012.00217CrossRefGoogle Scholar
  26. 26.
    Karaket N, Supaibulwatana K, Ounsuk S, Bultel-Poncé V, Pham VC, Bodo B (2012) Chemical and bioactivity evaluation of the bark of Neonauclea purpurea. Nat Prod Commun 7(2):169–170Google Scholar
  27. 27.
    Nugroho AE, Sugai M, Hirasawa Y, Hosoya T, Awang K, Hadi AH, Ekasari W, Widyawaruyanti A, Morita H (2011) New antiplasmodial indole alkaloids from Hunteria zeylanica. Bioorg Med Chem Lett 21(11):3417–3419CrossRefGoogle Scholar
  28. 28.
    Shivhare SC, Patidar AO, Malviya KG, Shivhare-Malviya KK (2011) Antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits. Ayu 32(3):388–394CrossRefGoogle Scholar
  29. 29.
    Ali R, Mirza Z, Ashraf GM, Kamal MA, Ansari SA, Damanhouri GA, Abuzenadah AM, Chaudhary AG, Sheikh IA (2012) New anticancer agents: recent developments in tumor therapy. Anticancer Res 32(7):2999–3005Google Scholar
  30. 30.
    Lourenco AM, Ferreira LM, Branco PS (2012) Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities. Curr Pharm DesGoogle Scholar
  31. 31.
    Bertino JR (1997) Irinotecan for colorectal cancer. Semin Oncol 24:S18–S23Google Scholar
  32. 32.
    Stahelin H (1973) Activity of a new glycosidic lignan derivative (VP 16-213) related to podophyllotoxin in experimental tumors. Eur J Cancer 9:215–221Google Scholar
  33. 33.
    Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60CrossRefGoogle Scholar
  34. 34.
    Harvey AL (1999) Medicines from nature: are natural products still relevant to drug discovery. Trends Pharmacol Sci 20:196–198CrossRefGoogle Scholar
  35. 35.
    Inbaneson SJ, Sundaram R, Suganthi P (2012) In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pac J Trop Med 5(2):103–106CrossRefGoogle Scholar

Web Resources

  1. KEGG: Kyoto Encyclopedia of Genes and Genomes.
  2. Plant Alkaloids – Wayne’s Word.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feroz Khan
    • 1
  • Tabish Qidwai
    • 1
  • Rakesh K. Shukla
    • 2
  • Vikrant Gupta
    • 2
  1. 1.Metabolic and Structural Biology DepartmentCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia
  2. 2.Biotechnology DivisionCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia

Personalised recommendations