Natural Products pp 3345-3366 | Cite as

Quassinoids: Chemistry and Novel Detection Techniques

  • Dipjyoti ChakrabortyEmail author
  • Amita Pal
Reference work entry


Natural products play a dominant role in pharmaceutical industry, providing resources for the discovery of new drug molecules. Quassinoids are degraded triterpenes reported from the members of the Simarouboidaea subfamily of Simaroubaceae. The importance of quassinoids as antiplasmodial, anticancer and anti-HIV compounds has revived interest in them as potential drug candidates. Its efficacy as combinatorial drug coupled with the structure–activity analysis has reclaimed novel structural leads for new drug development. Quassinoids are categorized into five distinct groups according to their basic skeleton, viz., C-18, C-19, C-20, C-22, and C-25. This present entry reviews the structure, structure–activity relationship, and methods of isolation, detection, and characterization of quassinoids. Recent LC–MS/MS-based techniques could effectively provide more lead molecules which would act in synergism with other compounds.


Mass spectrometry quantitative structure–activity relationship Quassinoid 



Electrospray ionization


Gamma-aminobutyric acid


Gas chromatography


Human immunodeficiency virus


High-performance liquid chromatography


Liquid chromatography


Matrix-assisted laser desorption/ionization


Mass spectrometry


Nuclear magnetic resonance


Quantitative electronic structure–activity relationship


Quantitative structure–activity relationship


Structure–activity relationship


  1. 1.
    Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52(3):253–262CrossRefGoogle Scholar
  2. 2.
    Phillipson JD, Wright CW, Kirby GC, Wrhurst DC (1995) Structure and biological activity of sesquiterpene and diterpene derivatives from medicinal plants. In: Hostettmann K, Marston A, Maillard M, Hamburger M (eds) Phytochemistry of the plants used in traditional medicine. Oxford University Press, London, pp 95–136Google Scholar
  3. 3.
    Lang’at-Thoruwa C, Kirby GC, Phillipson JD, Warhurst DC, Watt RA, Wright CW (2003) Enhancement of the antiplasmodial activity of quassin by transformation into a gamma-lactone. J Nat Prod 66:1486–1489CrossRefGoogle Scholar
  4. 4.
    Spencer CF, Koniuszy FR, Rogers EF, Shavel J, Easton NR, Kaczka EA, Kuehl FA, Phillips RF, Walti A, Folkers K, Malanga C, Seeler AO (1947) Survey of plants for antimicrobial activity. Lloydia 10:145–148Google Scholar
  5. 5.
    Khan SA, Shamsuddin KM (1980) Isolation and structure of 13,18-dehydroexcelsin, a quassinoid, and glaucarubol from Ailanthus excelsa. Phytochemistry 19:2484–2485CrossRefGoogle Scholar
  6. 6.
    Govindachari TR, Kumari GN, Gopalakrishnan G, Suresh G, Wesley SD, Sreelatha T (2001) Insect antifedant and growth regulating activities of quassinoids from Samadera indica. Fitoterapia 72:568–571CrossRefGoogle Scholar
  7. 7.
    Grieco PA, Vander-Roest JM, Pineiro-Nunez MM, Campaigne EE, Carmack M (1995) Polyandrol, a C19 quassinoid from Castela polyandra. Phytochemistry 38:1463–1465CrossRefGoogle Scholar
  8. 8.
    Grieco PA, Haddad J, Pineiro-Nunez MM, Huffman JC (1999) Quassinoids from the twigs and thorns of Castela polyandra. Phytochemistry 50:637–645CrossRefGoogle Scholar
  9. 9.
    Fleck TJ, Grieco PA (1992) Synthetic studies on quassinoids: total synthesis of (±)-glaucarubolone and (±)-holacanthone. Tetrahedron Lett 33:1813–1816CrossRefGoogle Scholar
  10. 10.
    Grieco PA, Collins JL, Moher ED, Fleck TJ, Gross RS (1993) Synthetic studies on quassinoids: Total synthesis of (-)-Chaparrinone, (-)-Glaucarubolone, and (+)-Glaucarubinone. J Am Chem Soc 115:6078–6093CrossRefGoogle Scholar
  11. 11.
    Dou J, McChesney JD, Sindelar RD, Goins DK, Walker LA (1996) A New Quassinoid from Castela texana. J Nat Prod 59:73–76CrossRefGoogle Scholar
  12. 12.
    Kubo I, Chaudhuri SK (1993) A quassinoid glucoside from the bark of Castela tortuosa. Phytochemistry 32:215–217CrossRefGoogle Scholar
  13. 13.
    Chaudhuri SK, Kubo I (1992) Two quassinoid glucosides from Castela tortuosa. Phytochemistry 31:3961–3964CrossRefGoogle Scholar
  14. 14.
    Itokawa H, Qin X-R, Morita H, Koichi T (1993) C18 and C19 Quassinoids from Eurycoma longifolia. J Nat Prod 56:1766–1771CrossRefGoogle Scholar
  15. 15.
    Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y (1993) Highly oxygenated quassinoids from Eurycoma longifolia. Phytochemistry 33:691–696CrossRefGoogle Scholar
  16. 16.
    Carter CAG, Tinto WF, Reynolds WF, McLean S (1993) Quassinoids from Quassia multiflora: Structural Assignments by 2D NMR Spectroscopy. J Nat Prod 56:130–133CrossRefGoogle Scholar
  17. 17.
    Itokawa H, Kishi E, Morita H, Takeya K (1992) Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia. Chem Pharm Bull 40:1053–1055CrossRefGoogle Scholar
  18. 18.
    Itokawa H, Qin X-R, Morita H, Takeya K, IItaka Y (1993) Novel quassinoids from Eurycoma Longifolia. Chem Pharm Bull 41:403–405CrossRefGoogle Scholar
  19. 19.
    Morita H, Kishi E, Takeya K, Itokawa H, Tanaka O (1990) New quassinoids from roots of. Eurycoma longifolia. Chem Lett 5:749–752CrossRefGoogle Scholar
  20. 20.
    Takeya K, Ang HH, Hitotsuyanagi Y (2000) Eurycolactones A–C, novel quassinoids from Eurycoma longifolia. Tetrahedron Lett 41:6849–6853CrossRefGoogle Scholar
  21. 21.
    Takeya K, Ang HH, Hitotsuyanagi Y, Fukaya H (2002) Quassinoids from Eurycoma longifolia. Phytochemistry 59:833–837CrossRefGoogle Scholar
  22. 22.
    Jiwajinda S, Santisopasri V, Murakami A, Hirai N, Ohigashi H (2001) Quassinoids from Eurycoma longifolia as plant growth inhibitors. Phytochemistry 58:959–962CrossRefGoogle Scholar
  23. 23.
    Polonsky J, Baskevitch Z, Gottlefb HE, Hagamman EW, Wenkert E (1975) Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Quassinoid Bitter Principles. J Org Chem 40:2499–2504CrossRefGoogle Scholar
  24. 24.
    Tada H, Yasuda F, Otani K, Doteuchi M, Ishihara Y, ShiroM (1991) New antiulcer quassinoids from Eurycoma longifolia. Eur J Med Chem 26:345–349CrossRefGoogle Scholar
  25. 25.
    Low BS, Teh CH, Yuen KH, Chan KL (2011) Physico-chemical effects of the major quassinoids in a standardized Eurycoma longifolia extract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat Prod Commun 6:337–341Google Scholar
  26. 26.
    Yamasaki K, Kanchanapoom T, Kasai R, Chumsri P (2001) Quassinoids from Eurycoma harmandiana. Phytochemistry 57:1205–1208CrossRefGoogle Scholar
  27. 27.
    Kitagawa I, Mahmud T, Yokota KI, Nakagawa S, Mayumi T, Kobayashi M, Shibuya H (1996) Indonesian medicinal plants. XVII. Characterization of quassinoids from the stems of Quassia indica. Chem Pharm Bull 44:2009–2014CrossRefGoogle Scholar
  28. 28.
    Takeya K, Ozeki A, Hitotsuyanagi Y, Hashimoto E, Itokawa H, Alves SM (1998) Cytotoxic quassinoids from Simaba cedron. J Nat Prod. 61:776–780CrossRefGoogle Scholar
  29. 29.
    Takeya K, Hitotsuyanagi Y, Ozeki A, Itokawa H, Alves SM (2001) Cedronolactone E, a novel C19 Quassinoid from Simaba cedron J Nat Prod 64:1583–1584CrossRefGoogle Scholar
  30. 30.
    Aono H, Koike K, Kaneko J, Ohmoto T (1994) Alkaloids and quassinoids from Ailanthus malabarica. Phytochemistry 37:579–584CrossRefGoogle Scholar
  31. 31.
    Kubota K, Fukamiya N, Hamada T, Okano M, Tagahara K, Lee KH (1996) Two new quassinoids, ailantinols A and B, and related compounds from Ailanthus altissima. J Nat Prod 59:683–686CrossRefGoogle Scholar
  32. 32.
    Kamiuchi K, Mitsunaga K, Koike K, Ouyang Y, Ohmoto T, Nikaido T (1996) Quassinoids and limonoids from Harrisonia perforata. Heterocycles 43:653–664CrossRefGoogle Scholar
  33. 33.
    Matsuzaki T, Fukamiya N, Okano M, Fujita T (1991) Picrasinoside H, a new quassinoid glucoside, and related compounds from the stem wood of Picrasma ailanthoides. J Nat Prod 54:844–848CrossRefGoogle Scholar
  34. 34.
    Daido M, Fukamiya N, Okano M, Tagahara K (1995) Picrasinol D, a new quassinoid from the stem wood of Picrasma ailanthoides. J Nat Prod 58:605–608CrossRefGoogle Scholar
  35. 35.
    Daido M, Fukamiya N, Okano M, Tagahara K (1992) Picrasinol C a new quassinoid, and its related compounds from the stem wood of Picrasma ailanthoides. J Nat Prod 55:1643–1647CrossRefGoogle Scholar
  36. 36.
    Krebs HC, Schilling PJ, Wartchow R, Bolte M (2001) Quassinoids and other constituents from Picrasma crenata. Z fuer Naturforsch B: Chem Sci 56:315–318Google Scholar
  37. 37.
    Koike K, Yokoh M, Furukaw M, Ishil S, Ohmoto T (1995) Picrasane quassinoids from Picrasma javanica. Phytochemistry 40:233–238CrossRefGoogle Scholar
  38. 38.
    Koike K, Ohmoto T (1992) New quassinoid glucosides, Javanicinosides I, J, K, and L, from Picrasma javanica. J Nat Prod 55:482–486CrossRefGoogle Scholar
  39. 39.
    Yang S-P, Yue J-M (2004) Five new quassinoids from the bark of Picrasma quassioides. Helv Chim Acta 87:1591–1600CrossRefGoogle Scholar
  40. 40.
    Barbetti P, Grandolini G, Fardella G, Chiappini I (1993) Quassinoids from Quassia amara. Phytochemistry 32:1007–1013CrossRefGoogle Scholar
  41. 41.
    Cachet N, Hoakwie F, Houel E, Deharo D, Bourdy G, Jullian V (2012) Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae). Phytochem Lett 5:162–164CrossRefGoogle Scholar
  42. 42.
    Francois G, Diakanamwa C, Timperman G, Bringmann G, Steenackers T, Atassi G, Looveren MV, Holenz J, Tassin JP, Assi LA, Vanhaelen-Fastre R, Vanhaelen M (1998) Antimalarial and cytotoxic potential of four quassinoids from Hannoa chlorantha and Hannoa klaineana, and their structure-activity relationships. Int J Parasitol 28:635–640CrossRefGoogle Scholar
  43. 43.
    Vieira IJ, Rodrigues-Filho E, Vieira PC, Silva M, Fernandes JB (1998) Quassinoids and protolimonoids from Simaba cedron.Fitoterapia 69:88–90Google Scholar
  44. 44.
    Itokawa H, Takeya K, Kobata H, Ozeki A, Morita H (1997) A new quassinoid from Ailanthus vilmoriniana J Nat Prod 60:642–644Google Scholar
  45. 45.
    Takeya K, Kobata H, Ozeki A, Morita H, Itokawa H (1998) Quassinoids from Ailanthus vilmoriniana. Phytochemistry 48:565–568CrossRefGoogle Scholar
  46. 46.
    Ghosh PC, Larrahondo JE, Quesne PW, Raffauf RF (1977) Antitumor plants. IV. Constituents of Simarouba versicolor. J Nat Prod 40:364–369Google Scholar
  47. 47.
    Grieco PA, Moher ED, Seya M, Huffman JC, Grieco HJ (1994) A quassinoid (peninsularinone) and a steroid from Castela peninsularis. Phytochemistry 37:1451–1454CrossRefGoogle Scholar
  48. 48.
    Cabral JA, McChesney JD, Milhous WK (1993) New antimalarial quassinoid from Simaba guianensis. J Nat Prod 56:1954–1961CrossRefGoogle Scholar
  49. 49.
    Imamura K, Fukamiya N, Okano M, Tagahara K, Lee KH (1993) Bruceanols D, E, and F. Three new cytotoxic quassinoids from Brucea antidysenterica. J Nat Prod 56:2091–2097.Google Scholar
  50. 50.
    Imamura K, Fukamiya N, Nakamura M, Okano M, Tagahara K, Lee KH (1995) Bruceanols G and H, cytotoxic quassinoids from Brucea antidysenterica. J Nat Prod 58:1915–1919Google Scholar
  51. 51.
    Fukamiya N, Lee KH, Muhammad I, Murakamia C, Okanoa M, Harveyd I, Pelletier J (2005) Structure-activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Lett 220(1):37–48CrossRefGoogle Scholar
  52. 52.
    Ohnishi S, Fukamiya N, Okano MJ (1995) Bruceosides D, E, and F, three new cytotoxic quassinoid glucosides from Brucea javanica. J Nat Prod 58:1032–1038.CrossRefGoogle Scholar
  53. 53.
    Vieira IJC, Filho RB, Filho ER, Vieira PC, da Silva MF, Fernandes JB (1999). 20(R)- and 20(S)-Simarolide epimers isolated from Simaba cuneata: chemical shifts assignment of carbon and hydrogen atoms. J Braz Chem Soc 10: 76–84CrossRefGoogle Scholar
  54. 54.
    Njar VCO, Alao TO, Okogun JI, Raji Y, Bolarinwa AF, Nduka EU (1995) Antifertility activity of Quassia amara: quassin inhibits the steroidogenesis in rat Leydig cells in vitro. Planta Med 61:180–182CrossRefGoogle Scholar
  55. 55.
    Guo Z, Vangapandu S, Sindelar RW, Walker LA, Sindelar RD (2005) Biologically active quassinoids and their chemistry: potentianl leads for drug design. Curr Med Chem 12:173–190CrossRefGoogle Scholar
  56. 56.
    Muhammad I, Samoylenko V (2007) Antimalarial quassinoids: past, present and future. Expert Opin Drug Discov 2(8):1065–1084CrossRefGoogle Scholar
  57. 57.
    Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256CrossRefGoogle Scholar
  58. 58.
    Sen R, Chatterjee M (2011) Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 18(12):1056–1069CrossRefGoogle Scholar
  59. 59.
    Reynertson KA, Charlsona ME, Gudasa LJ (2011) nduction of murine embryonic stem cell differentiation by medicinal plant extracts. Exp Cell Res 317:82–93CrossRefGoogle Scholar
  60. 60.
    Bhattacharjee S, Gupta G, Bhattacharya P, Mukherjee A, Bhattacharyya MS, Pal A, Majumdar S (2009) Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity. J Antimicrob Chemother 63:317–324CrossRefGoogle Scholar
  61. 61.
    Mishra K, Chakraborty D, Pal A, Dey N (2010) Plasmodium falciparum: In vitro interaction of quassin and neo-quassin with artesunate, a hemisuccinate derivative of artemisinin. Exp Parasitol 124:421–427CrossRefGoogle Scholar
  62. 62.
    Liu JH, Zhao N, Zhang GJ, Yu SS, Wu LJ, Qu J, Ma SG, Chen XG, Zhang TQ, Bai J, Chen H, Fang ZF, Zhao F, Tang WB (2012) Bioactive quassinoids from the seeds of Brucea javanica. J Nat Prod 75(4):683–688CrossRefGoogle Scholar
  63. 63.
    Cachet N, Hoakwie F, Bertani S, Bourdy G, Deharo E, Stien D, Houel E, Gornitzka H, Fillaux J, Chevalley S, Valentin A, Jullian V (2009) Antimalarial activity of Simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae). Antimicrob Agents Chemother 53:4393–4398CrossRefGoogle Scholar
  64. 64.
    Yan XH, Chen J, Di Y-T, Fang X, Dong J-H, Sang P, Wang Y-H, He H-P, Zhang Z-K, Hao X-J (2010) Anti-Tobacco Mosaic Virus (TMV) Quassinoids from Brucea javanica (L.) Merr. J Agric Food Chem 58:1572–1577CrossRefGoogle Scholar
  65. 65.
    Oshimi S, Takasaki A, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Ekasari W, Widyawaruyanti A, Morita H (2009) Delaumonones A and B, new antiplasmodial quassinoids from Laumoniera bruceadelpha. Chem Pharm Bull 57:867–869CrossRefGoogle Scholar
  66. 66.
    Deharo E, Ginsburg H (2011) Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J 10(suppl 1):S5CrossRefGoogle Scholar
  67. 67.
    Liou YF, Hall IH, Okano M, Lee KH, Chaney SG (1982) Antitumor agents XLVIII: Structure – activity relationships of quassinoids as in vitro protein synthesis inhibitors of P-388 lymphocytic leukemia tumor cell metabolism. J Pharm Sci 71:430–435CrossRefGoogle Scholar
  68. 68.
    Considine RT, Willingham W, Chaney SG, Wyrick S, Hall IR, Lee KH (1983) Structure-activity relationships for binding and inactivation of rabbit reticulocyte ribosomes by quassinoid antineoplastic agents. Eur J Biochem 132:157–163CrossRefGoogle Scholar
  69. 69.
    Hall IH, Lee KH, Imakura Y, Okano M, Johnson A (1983) Anti-inflammatory agents III: Structure–activity relationships of brusatol and related quassinoids. J Pharm Sci 72:1282–1284CrossRefGoogle Scholar
  70. 70.
    Okano M, Fukamiya N, Tagahara K, Tokuda H, Iwashima A, Nishino H, Lee KH (1995) Inhibitory effects of quassinoids on Epstein-Barr virus activation. Cancer Lett 94:139–146CrossRefGoogle Scholar
  71. 71.
    Dayan FE, Watson SB, Galindo JCG, Hernández A, Dou J, McChesney JD, Duke SO (1999) Phytotoxicity of quassinoids: physiological responses and structural requirements. Pestic Biochem Physiol 65(1):15–24CrossRefGoogle Scholar
  72. 72.
    Bawm S, Matsuura H, Elkhateeb A, Nabeta K, Subeki, Oku NNY, Katakura K (2008) In vitro antitrypanosomal activities of quassinoid compounds from the fruits of a medicinal plant, Brucea javanica. Vet Parasitol 158:288–294CrossRefGoogle Scholar
  73. 73.
    Wani MC, Taylor HL, Thompson JB, Wall ME, McPhail AT, Onan KD (1979) Plant antitumour agents-XV: Isolation and x-ray crystal structure of a new antileukaemic quassinoid undulatone from Hannoa undulate. Tetrahedron 35:17–24CrossRefGoogle Scholar
  74. 74.
    Valeriote FA, Corbett TH, Grieco PA, Moher ED, Collins JL, Fleck TJ (1998) Anticancer activity of glaucarubinone analogues. Oncol Res 10:201–208Google Scholar
  75. 75.
    Ekong RM, Kirby GC, Patel GC, Phillipson JD, Warhurst DC (1990) Comparison of the in vitro activities of quassinoids with activity against Plasmodium falciparum, anisomycin and some other inhibitors of eukaryotic protein synthesis. Biochem Pharm 40:297–301CrossRefGoogle Scholar
  76. 76.
    Kirby GC, O’Neill MJ, Phillipson JD, Warhurst DC (1989) In vitro studies on the mode of action quassionoids with activity against chloroquine-resistant Plasmodium falciparum. Biochem Pharmacol 38:4367–4374CrossRefGoogle Scholar
  77. 77.
    Klocke JA, Arisawa M, Handa SS, Kinghorn AD, Cordell GA, Farnsworth NR (1985) Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic quassinoids on two species of agricultural pests. Experientia 41:379–382CrossRefGoogle Scholar
  78. 78.
    Leskinen V, Polonsky J, Bhatnagar SJ (1984) Antifeedant activity of quassinoids. Chem Ecol 10:1497–1507CrossRefGoogle Scholar
  79. 79.
    Lidert Z, Wing K, Polonsky JJ, Imakura Y, Okano M, Tani S, Lin Y-M, Kiyokawa H, Lee K-H (1987) Insect antifeedant and growth inhibitory activity of forty-six quassinoids on two species of agricultural pests. J Nat Prod 50:442CrossRefGoogle Scholar
  80. 80.
    Ramírez-Galicia G, Martínez-Pacheco H, Garduño-Juárez R, Deeb O (2011) Exploring QSAR of antiamoebic agents of isolated natural products by MLR, ANN, and RTO. Med Chem Res 21:2501–2516CrossRefGoogle Scholar
  81. 81.
    van Dang G, Rode BM, Stuppner H (1994) Quantitative electronic structure-activity relationship (QESAR) of natural cytotoxic compounds: maytansinoids, quassinoids and cucurbitacins. Eur J Pharm Sci 2:331–350CrossRefGoogle Scholar
  82. 82.
    Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (2000) Anti tumor compounds isolated from higher plaints. In: Atta-ur-Rahman (eds) Studies in natural products chemistry, vol 24 (E). Elsevier, pp 269–350Google Scholar
  83. 83.
    Kuriyama T, Ju X-L, Fusazaki S, Hishinuma H, Satou T, Koike K, Nikaido T, Ozoe Y (2005) Nematocidal quassinoids and bicyclophosphorothionates: a possible common mode of action on the GABA receptor. Pestic Biochem Physiol 81:176–187CrossRefGoogle Scholar
  84. 84.
    Lee KH (2004) Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 67:273–283CrossRefGoogle Scholar
  85. 85.
    Kuo RY, Qian K, Morris-Natschke SL, Lee K-H (2009) Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat Prod Rep 26:1321–1344CrossRefGoogle Scholar
  86. 86.
    Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W, Pezzuto JM (2002) Brusatol-mediated induction of leukemic cell differentiation and G1 arrest is associated with down-regulation of c-myc. Leukemia 16:2275–2284CrossRefGoogle Scholar
  87. 87.
    Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. Nat Prod 67:269–272CrossRefGoogle Scholar
  88. 88.
    Fernand VE (2003) PhD thesis, Louisiana State University and Agricultural and Mechanical CollegeGoogle Scholar
  89. 89.
    Ayabe S, Nagashima S, Furuno T, Takahashi T, Yuki TT, Hirota H (1991) Growth and isoprenoid metabolism of cultured Picrasma quassioides cells. Plant Tissue Cult Lett 8:198–200CrossRefGoogle Scholar
  90. 90.
    Toma W, de Gracioso JS, de Andrade FD, Hiruma-Lima CA, Vilegas W, Souza Brito AR (2002) Antiulcerogenic activity of four extracts obtained from the bark wood of Quassia amara L. (Simaroubaceae). Biol Pharm Bull 25:1151–1155CrossRefGoogle Scholar
  91. 91.
    Scragg AH, Allan EJ (1986) Production of the triterpenoid quassin in callus and cell suspension cultures of Picrasma quassioides Bennett. Plant Cell Rep 5:356–359CrossRefGoogle Scholar
  92. 92.
    Lander V, Worner M, Kirchenmayer C, Wintoch H, Schreier P (1990) Application of solid-phase extraction for rapid sample preparation in the determination of food constituents asarone II, quinine, and coumarin quassin in spirits. Z Fur Lebensm Und -Forsch A 190:410–413CrossRefGoogle Scholar
  93. 93.
    Dou J, Khan IA, McChesney DM, Burabdt CL (1996) Qualitative and quantitative high performance liquid chromatographic analysis of quassinoids in simaroubaceae plants. Phytochem Anal 7:192–200CrossRefGoogle Scholar
  94. 94.
    Vitanyi G, Bihasti-Karsai E, Lefler J, Lelik L (1997) Application of high performance liquid chromatography/mass spectrometry with thermospray ionization to the detection of quassinoids extracted from Quassia amara L. Rapid Commun Mass Spectrom 11:691–693CrossRefGoogle Scholar
  95. 95.
    Nunomura RCS, Silva ECC, Nunomura SM, Amaral ACF, Barreto AS, Siani AC, Pohlit AM (2012) Quantification of antimalarial quassinoids neosergeolide and isobrucein b in stem and root infusions of Picrolemma sprucei Hook F. by HPLC-UV analysis. In: Dhanarasu S (eds) Chromatography and its applications. In-Tech Publishers, Rijeka, Croatia, pp 187–200. ISBN:978-953-51-0357-8Google Scholar
  96. 96.
    Sugimoto N, Sato K, Yamazaki T, Tanamoto K (2003) Analysis of constituents in Jamaica quassia extract, a natural bittering agent. Shokuhin Eiseigaku Zasshi 44(6):328–331CrossRefGoogle Scholar
  97. 97.
    Cardoso MLC, Kameib MS, Nunesa RF, Lazerib NS, Netoa JRS, Novelloa CR, Bruschi ML (2008) Development and validation of an HPLC method for analysis of Picrasma crenata. J Liq Chromatogr Relat Technol 32:72–79CrossRefGoogle Scholar
  98. 98.
    Sarais G, Cossu M, Cabras P, Caboni P (2010) Liquid chromatography electrospray ionization tandem mass spectrometric determination of quassin and neoquassin in fruits and vegetables. J Agric Food Chem 58:2807–2811CrossRefGoogle Scholar
  99. 99.
    Chua LS, Amin NAM, Neo JCH, Lee TH, Lee CT, Sarmidia MR, Aziz RA (2011) LC–MS/MS-based metabolites of Eurycoma longifolia (Tongkat Ali) in Malaysia (Perak and Pahang). J Chromatogr B 879:3909–3919CrossRefGoogle Scholar
  100. 100.
    Teh CH, Murugaiyah V, Chan KL (2011) Developing a validated liquid chromatography-mass spectrometric method for the simultaneous analysis of five bioactive quassinoid markers for the standardization of manufactured batches of Eurycoma longifolia Jack extract as antimalarial medicaments. J Chromatogr A 1218:1861–1877CrossRefGoogle Scholar
  101. 101.
    Scragg AH, Allan EJ (1994) Quassia amara (Surinam Quassia): in vitro culture and the production of quassin. In: Bajaj YPS (eds) Biotechnology in agriculture and forestry, vol 26. Medicinal and aromatic plants VI. Springer, Heidelberg, pp 316–326Google Scholar
  102. 102.
    Robins RJ, Rhodes MJC (1984) High-performance liquid chromatographic methods for the analysis and purification of quassinoids from Quassia amara. J Chromatogr A 283:436–440CrossRefGoogle Scholar
  103. 103.
    Concha-Herrera V, Torres-Lapasio JR, Vivo-Truyols G, Gracia-Alvarez-Coque MC (2007) A comparative study of the performance of acetonitrile and methanol in the multi-linear gradient separation of proteic primary amino acids. Anal Chim Acta 582:250–258CrossRefGoogle Scholar
  104. 104.
    Hanson JR (2001) The development of strategies for terpenoid structure determination. Nat Prod Rep 18:607–617CrossRefGoogle Scholar
  105. 105.
    Carl-Ove A (1958) Mass spectrometric studies on amino acid and peptide derivatives. Acta Chem Scand 12:1353Google Scholar
  106. 106.
    Mandal M, Chakraborty D (2012) Mass spectrometric detection of phenolic acids. In: Ramawat KG, Merillon LM (eds) Handbook of natural products. Springer, Berlin/Heidelberg/New York. doi:10.1007/978-3-642-22144-6_90Google Scholar
  107. 107.
    Taylor MJ, Keenan GA, Reid KB, Fernandez DU (2008) The utility of ultra-performance liquid chromatography/electrospray ionisation time-of-flight mass spectrometry for multi-residue determination of pesticides in strawberry. Rapid Commun Mass Spectrom 22:2731–2746CrossRefGoogle Scholar
  108. 108.
    Oshimi S, Takasaki A, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Ekasari W, Widyawaruyanti A, Morita H (2010) Delaumonones A and B, new antiplasmodial quassinoids from Laumoniera bruceadelpha. ChemInform 41. doi:10.1002/chin.201002202Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologyBanasthali VidyapithBanasthaliIndia
  2. 2.Division of Plant BiologyBose InstituteKolkataIndia

Personalised recommendations