Natural Products pp 3123-3157 | Cite as

Nivalenol (Fungal Sesquiterpenes)

Reference work entry


Nivalenol (NIV) belongs to the B-type trichothecene mycotoxins produced by Fusarium species. The occurrence of NIV contamination is limited to certain areas around the world, such as Japan, Korea, New Zealand, and a part of Europe, where it has had adverse effects on human and animal health. This chapter focuses on the mycology, occurrence, biosynthesis, toxicology, methods of analysis, and risk assessment of NIV.


Analysis method biosynthesis exposure assessment mycology nivalenol toxicity 



Body weight




European Commission Union


European Food Safety Authority


Head blight


Fusarenon-X (4-acetyl NIV)


Joint expert committee of food additives


50% lethal dose


Low-observed-adverse-effect level






S9 liver microsomal enzymes


Scientific Committee on Food




  1. 1.
    Yoshizawa T (2003) Human and animal intoxication episodes caused by trichothecene mycotoxins. Mycotoxins 53: 113CrossRefGoogle Scholar
  2. 2.
    Aoki T, O'Donnell K (1998) Fusarium kyushuense sp. nov. from Japan, Mycoscience 39: 1Google Scholar
  3. 3.
    Tatsuno T, Saito M, Enomoto M, Tsunoda H (1968) Nivalenol, a toxic principle of Fusarium nivale. Chem Pharm Bull 16: 2519CrossRefGoogle Scholar
  4. 4.
    Tatsuno T, Fujimoto Y, Morita Y (1969) Toxicological research on substances from Fusarium nivale III. The structure of nivalenol and its monoacetate.Tetrahedron Lett 33: 2823Google Scholar
  5. 5.
    Ueno Y, Ishikawa Y, Saito-Amakai K, Tsunoda H (1970) Environmental factors influencing the production of fusarenon-X, a cytotoxic mycotoxin of Fusarium nivale Fn2B. Chem Pharm Bull 18: 304CrossRefGoogle Scholar
  6. 6.
    Yoshizawa T, Morooka N (1973) Deoxynivalenol and its monoacetate: new mycotoxins from Fusarium roseum and moldy barley. Agricalture Biologica Chemistry. 37: 2933CrossRefGoogle Scholar
  7. 7.
    Bhat RV, Beedu SR, Ramakrishna Y, Munshi KL (1989) Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India. The Lancet 333: 35CrossRefGoogle Scholar
  8. 8.
    Luo, X (1994) Food poisoning caused by Fusarium toxins. Proceedings of the Second Asian Conference on Food Safety, Bangkok, pp. 129Google Scholar
  9. 9.
    Yoshizawa (1984) Trichothences, chemical, biological, and toxicological aspects. Kodansha Ltd. Tokyo Japan P.195Google Scholar
  10. 10.
    Pestka JJ (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World mycotoxin Journal 3: 323Google Scholar
  11. 11.
    European Commission (2003) Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU Member States, Report on Tasks for Scientific Cooperation (SCOOP) 3.2.10 European Commission, Brussels. Available to Cited 20 Dec 2007
  12. 12.
    European Commission. Scientific Committee on Food (2000). Opinion of the Scientific Committee on Food on Fusarium Toxins. Part 4: Nivalenol (NIV) SCF/CS/CNTM/MYC/26 Final. (available at : Cited 20 Dec 2007
  13. 13.
    Ichinoe M, Kurata H, Sugiura Y, Ueno Y (1983) Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Applied and environmental microbiology 46: 1364Google Scholar
  14. 14.
    Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri 13 and Tri 7 determine deoxynivalenol- and nivalenol- producing chemotypes of Gibberella zeae. Applied and Environmental Microbiology 68: 2148CrossRefGoogle Scholar
  15. 15.
    Variation in 8-ketotrichothecenes and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Seo JA, Kim JC, Lee DH, Lee YW (1996) Mycopathologia 134(1): 31Google Scholar
  16. 16.
    Kim HS, Lee T, Dawlatana M, Yun SH, Lee YW (2003) Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycological Research 107: 190CrossRefGoogle Scholar
  17. 17.
    Mirocha CJ, Abbas HK, Windels CE, Xie W (1989) Variation in deoxynivalenol, 15-deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone production by Fusarium graminearum isolates. Applied and Environmental Microbiology 55: 1315Google Scholar
  18. 18.
    Desjardins AE (2006) Fusarium Mycotoxins:Chemistry, Genetics, and Biology, American Phytopathological Society Press, St. Paul, Minnesota U.S.A.Google Scholar
  19. 19.
    O’Donnel K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum. Proceedings of the National Academy of Sciences of the Unites States of America 97: 7905Google Scholar
  20. 20.
    Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O'Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the Unites States of America 99: 9278Google Scholar
  21. 21.
    Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O'Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Bio 44: 1191CrossRefGoogle Scholar
  22. 22.
    Sugita-konishi Y, Nakajima T (2009) Rai M, Varma A (eds) Mycotoxins in Food,feed and Bioweapons. Springer, Heidelberg Dordrecht London New York, P253CrossRefGoogle Scholar
  23. 23.
    Monds RD, Cromey MG, Lauren DR, Menna M, Marshall J (2005) Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycological Research 109: 410Google Scholar
  24. 24.
    Gale LR, Ward TJ, O'Donnell K, Harrison SA, Kistler HC et al (2005) Fusarium head blight of wheat in Louisiana is caused largely by nivalenol producers of Fusarium graminearum and Fusarium asiaticum. Proceedings of the 2005 National Fusarium Head Blight Forum p.159.Google Scholar
  25. 25.
    Uga H, Karugia GW, Ward T, Gale, LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98: 159CrossRefGoogle Scholar
  26. 26.
    Cumagun CJR, Bowden RL, Jurgenson JE, Leslie JF, Miedaner T (2004) Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94: 520CrossRefGoogle Scholar
  27. 27.
    Desjardins AE, Jarosz AM, Plattner RD, Alexander NJ, Brown DW, Jurgenson JE (2004) Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from smallholder farms in Nepal. Journal of Agricultural and Food Chemistry 52: 6341CrossRefGoogle Scholar
  28. 28.
    Nakajima T, Yoshida M (2007) Mycotoxin productivity and virulence of Fusarium graminearum species complex causing Fusarium head blight on wheat and barley in the western part of Japan. Japanese Journal of Phytopathology 73: 106CrossRefGoogle Scholar
  29. 29.
    Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P (2004) Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathology 53: 182CrossRefGoogle Scholar
  30. 30.
    Sugiura Y, Fukasaku K, Tanaka T, Matsui Y, Ueno Y (1993) Fusarium poae and Fusanium crookwellense, Fungi responsible for the natural occurrence of nivalenol in Hokkaido. Applied. Environmental. Microbiology 59: 3334Google Scholar
  31. 31.
    Pettersson H, Hedman R, Engstrom B, Elwinger K, Fossum O (1995) Nivalenol in Swedish cereals--occurrence, production and toxicity towards chickens. Food Additives and Contaminants 12: 373CrossRefGoogle Scholar
  32. 32.
    Burgess LW, Nelson PE, Toussoun TA (1982) Characterization, geographic distribution and ecology of Fusarium crookwellense sp. Nov. Trans British Mycological Society 79: 497CrossRefGoogle Scholar
  33. 33.
    Miller JD, Greenhalgh R, Wang YZ, Lu M (1991) Trichothecene chemotypes of three Fusarium species. Mycologia 83: 121CrossRefGoogle Scholar
  34. 34.
    Fishman J, Jones ERH, Lowe G, Whiting MC (1959) The structure and biogenesis of trichothecin. Proc Chem Soc: 127-128Google Scholar
  35. 35.
    Machida Y, Nozoe S (1972) Biosynthesis of trichothecin and related compounds. Tetrahedron 28: 5113-5117CrossRefGoogle Scholar
  36. 36.
    Cane DE, Swanson S, Murthy PPN (1981) Trichodiene biosynthesis and the enzymatic cyclization of farnesyl pyrophosphate. J Am Chem Soc 103: 2136-2138CrossRefGoogle Scholar
  37. 37.
    Zamir LO, Gauthier MJ, Devor KA, Nadeau Y, Sauriol F (1989) Trichodiene is a precursor to trichothecenes. J Chem Soc Chem Comm: 598-600Google Scholar
  38. 38.
    McCormick SP, Taylor SL, Plattner RD, Beremand MN (1989) New modified trichothecenes accumulated in solid culture by mutant strains of Fusarium sporotrichioides. Appl Environ Microbiol 55: 2195-2199Google Scholar
  39. 39.
    Hesketh AR, Gledhill L, Marsh DC, Bycroft BW, Dewick PM, Gilbert J (1990) Isotrichodiol: a post-trichodiene intermediate in the biosynthesis of trichothecene mycotoxins. J Chem Soc Chem Comm: 1184-1186Google Scholar
  40. 40.
    Zamir LO, Devor KA, Morin N, Sauriol F (1991) Biosynthesis of trichothecenes: oxygenation steps post-trichodiene. J Chem Soc Chem Comm: 1033-1034Google Scholar
  41. 41.
    McCormick SP, Taylor SL, Plattner RD, Beremand MN (1990) Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol 56: 702-706Google Scholar
  42. 42.
    Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71: 2105-2123CrossRefGoogle Scholar
  43. 43.
    Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998) Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 273: 1654-1661CrossRefGoogle Scholar
  44. 44.
    Zamir LO, Devor KA, Nikolakakis A, Sauriol F (1990) Biosynthesis of Fusarium culmorum trichothecenes. The roles of isotrichodermin and 12,13-epoxytrichothec-9-ene. J Biol Chem 265: 6713-6725Google Scholar
  45. 45.
    Hohn TM, Beremand PD (1989) Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79: 131-138CrossRefGoogle Scholar
  46. 46.
    Hohn TM, McCormick SP, Desjardins AE (1993) Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 24: 291-295CrossRefGoogle Scholar
  47. 47.
    Desjardins AE (2009) From yellow rain to green wheat: 25 years of trichothecene biosynthesis research. J Agric Food Chem 57: 4478-4484CrossRefGoogle Scholar
  48. 48.
    Hohn TM, Desjardins AE, McCormick SP (1995) The Tri4 gene of Fusarium sporotrichioides encodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis. Mol Gen Genet 248: 95-102CrossRefGoogle Scholar
  49. 49.
    Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun 353: 412-417CrossRefGoogle Scholar
  50. 50.
    McCormick SP, Alexander NJ, Trapp SE, Hohn TM (1999) Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65: 5252-5256Google Scholar
  51. 51.
    Kimura M, Matsumoto G, Shingu Y, Yoneyama K, Yamaguchi I (1998) The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett 435: 163-168CrossRefGoogle Scholar
  52. 52.
    Alexander NJ, McCormick SP, Hohn TM (2002) The identification of the Saccharomyces cerevisiae gene AYT1(ORF-YLL063c) encoding an acetyltransferase. Yeast 19: 1425-1430.CrossRefGoogle Scholar
  53. 53.
    Alexander NJ, Hohn TM, McCormick SP (1998) The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol 64: 221-225Google Scholar
  54. 54.
    McCormick SP, Hohn TM, Desjardins AE (1996) Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl Environ Microbiol 62: 353-359Google Scholar
  55. 55.
    Tokai T, Takahashi-Ando N, Izawa M, Kamakura T, Yoshida M, Fujimura M, Kimura M (2008) Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Biosci Biotechnol Biochem 72: 2485-2489CrossRefGoogle Scholar
  56. 56.
    Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36: 224-233CrossRefGoogle Scholar
  57. 57.
    Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32: 121-133CrossRefGoogle Scholar
  58. 58.
    Meek IB, Peplow AW, Ake C, Jr., Phillips TD, Beremand MN (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 69: 1607-1613CrossRefGoogle Scholar
  59. 59.
    Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN (2003) Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides.Appl Environ Microbiol 69: 5935-5940Google Scholar
  60. 60.
    McCormick SP, Alexander NJ (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 68: 2959-2964CrossRefGoogle Scholar
  61. 61.
    Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61: 1923-1930Google Scholar
  62. 62.
    Tag AG, Garifullina GF, Peplow AW, Ake C, Jr., Phillips TD, Hohn TM, Beremand MN (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol 67: 5294-5302CrossRefGoogle Scholar
  63. 63.
    Peplow AW, Tag AG, Garifullina GF, Beremand MN (2003) Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol 69: 2731-2736CrossRefGoogle Scholar
  64. 64.
    Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261: 977-984CrossRefGoogle Scholar
  65. 65.
    Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Appl Environ Microbiol 67: capillary gas chromatography capillary gas chromatography 2966-2972Google Scholar
  66. 66.
    Kimura M, Tokai T, O'Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539: 105-110CrossRefGoogle Scholar
  67. 67.
    McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70: 2044-2051CrossRefGoogle Scholar
  68. 68.
    McCormick SP, Alexander NJ, Proctor RH (2006) Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Can J Microbiol 52: 220-226CrossRefGoogle Scholar
  69. 69.
    Hedman R, Pettersson H, Lindberg J.E (1997) Absorption and metabolism of nivalenol in pigs. Archives of animal nutrition Archiv fur Tierernahrung 50: 13Google Scholar
  70. 70.
    Poapolathep A, Poapolathep S, Sugita-Konishi Y, Imsilp K, Tassanawat T, Sinthusing C, Itoh Y, Kumagai S (2008) Fate of fusarenon-X in broilers and ducks. Poult Sci 87: 1510CrossRefGoogle Scholar
  71. 71.
    Avantaggiato G, Havenaar R, Visconti A (2004) Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem Toxicol 42: 817CrossRefGoogle Scholar
  72. 72.
    Poapolathep A, Sugita-Konishi Y, Doi K, Kumagai S (2003) Toxicon 41: 1047CrossRefGoogle Scholar
  73. 73.
    Hedman R, Pettersson H (1997) The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Archives of animal nutrition Archiv fur Tierernahrung 50: 321Google Scholar
  74. 74.
    Poapolathep A, Sugita-Konishi Y, Phitsanu T, Doi K, Kumagai S (2004) Placental and milk transmission of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Toxicon 44: 111CrossRefGoogle Scholar
  75. 75.
    Onji Y, Dohi Y, Aoki Y, Moriyama T, Nagami H, Uno M, Tanaka T, Yamazoe Y (1989) Deepoxynivalenol: a new metabolite of nivalenol found in theexcreta of orally administered rats. J Agric Food Chem 37: 478CrossRefGoogle Scholar
  76. 76.
    Garaleviciene D, Pettersson H, Elwinger K (2002) 76. Effects on health and blood plasma parameters of laying hens by pure nivalenol in the diet. J Anim Physiol Anim Nutr (Berl) 86: 389Google Scholar
  77. 77.
    Ryu JC, Ohtsubo K, Izumiyama N, Nakamura K, Tanaka T, Yamamura H, Ueno Y (1988) The acute and chronic toxicities of nivalenol in mice. Fundam Appl Toxicol 11: 38CrossRefGoogle Scholar
  78. 78.
    Kawasaki Y, Uchida O, Sekita K, Matsumoto K, Ochiai T, Usui A, Nakaji Y, Furuya T, Kurokawa Y (1990) Single and Repeated Oral Administration Toxicity Studies of Nivalenol in F344 Rats. J. Food Hyg. Soc. Jpn. 31: 144CrossRefGoogle Scholar
  79. 79.
    Ueno Y (1983) In: Ueno Y (ed) Trichothecenes: Chemical, Biological, and Toxicological Aspects (Developments in Food Science). Elsevier, Amsterdam, P. 135Google Scholar
  80. 80.
    Ryu JC, Ohtsubo K, Izumiyarna N, Mori M, Tanaka T, Ueno Y (1987) Effects of nivalenol on the bone marrow in mice. J Toxicol Sci 12: 11CrossRefGoogle Scholar
  81. 81.
    Gouze ME, Laffitte J, Pinton P, Dedieux G, Galinier A, Thouvenot JP, Loiseau N, Oswald IP, Galtier P (2007) Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Vet Res 38: 635CrossRefGoogle Scholar
  82. 82.
    Yamamura H, Kobayashi T, Ryu LC, Ueno Y (1989) Subchronic feeding studies with nivalenol in C57BL/6 mice. Food Chem Toxicol 27: 585CrossRefGoogle Scholar
  83. 83.
    Yabe T, Hashimota H, Sekijima M, Ddegawa M, Hashimoto Y, Tashiro F, Ueno Y (1993) Effects of nivalenol on hepatic drug-metabolizing activity in rats. Food Chem Toxicol 31: 573CrossRefGoogle Scholar
  84. 84.
    Kubosaki A, Aihara M, Park BJ, Sugiura Y, Shibutani M, Hirose M, Suzuki Y, Takatori K, Sugita-Konishi Y (2008) Immunotoxicity of nivalenol after subchronic dietary exposure to rats. Food Chem Toxicol 46: 253CrossRefGoogle Scholar
  85. 85.
    Takahashi M, Shibutani M, Sugita-Konishi Y, Aihara M, Inoue K, Woo GH, Fujimoto H, Hirose M (2008) A 90-day subchronic toxicity study of nivalenol, a trichothecene mycotoxin, in F344 rats. Food Chem Toxicol 46: 125CrossRefGoogle Scholar
  86. 86.
    Hedman R, Thuvander A, Gadhasson I, Reverter M, Pettersson H (1997) Influence of dietary nivalenol exposure on gross pathology and selected immunological parameters in young pigs. Nat Toxins 5: 238CrossRefGoogle Scholar
  87. 87.
    Hedman R, Pettersson H, Engstrom B, Elwinger K, Fossum O (1995) Effects of feeding nivalenol-contaminated diets to male broiler chickens. Poult Sci 74: 620CrossRefGoogle Scholar
  88. 88.
    Ohtsubo K, Ryu JC, Nakamura K, Izumiyama N, Tanaka T, Yamamura H, Kobayashi T, Ueno Y (1989) Chronic toxicity of nivalenol in female mice: a 2-year feeding study with Fusarium nivale Fn 2B-moulded rice. Food Chem Toxicol 27: 591CrossRefGoogle Scholar
  89. 89.
    Thust R, Kneist S, Huhne V (1983) Genotoxicity of Fusarium mycotoxins (nivalenol, fusarenon-X, T-2 toxin, and zearalenone) in Chinese hamster V79-E cells in vitro. Arch Geschwulstforsch 53: 9Google Scholar
  90. 90.
    Hsia CC, Wu JL, Lu XQ, Li YS (1988) Natural occurrence and clastogenic effects of nivalenol, deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in corn from a high-risk area of esophageal cancer. Cancer Detect Prev 13: 79Google Scholar
  91. 91.
    Hsia CC, Wu ZY, Li YS, Zhang F, Sun ZT (2004) Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncol Rep 12: 449Google Scholar
  92. 92.
    Tsuda S, Kosaka Y, Murakami M, Matsuo H, Matsusaka N, Taniguchi K, Sasaki YF (1998) Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mut Res 415: 191CrossRefGoogle Scholar
  93. 93.
    Poapolathep A, Ohtsuka R, Kiatipattanasakul W, Ishigami N, Nakayama H, Doi K (2002) Nivalenol--induced apoptosis in thymus, spleen and Peyer's patches of mice. Exp Toxicol Pathol 53: 441CrossRefGoogle Scholar
  94. 94.
    Poapolathep A, Kumagai S, Suzuki H, Doi K (2004) Development of early apoptosis and changes in T-cell subsets in mouse thymocyte primary cultures treated with nivalenol. Exp Mol Pathol. 77: 149.CrossRefGoogle Scholar
  95. 95.
    Sugita-Konishi Y (2003) Effect of trichothecenes on host resistance to bacterial infection. Mycotoxins 53: 141CrossRefGoogle Scholar
  96. 96.
    Sugiyama K, Muroi M, Tanamoto K, Nishijima M, Sugita-Konishi Y (2010) Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicol Lett 192: 150CrossRefGoogle Scholar
  97. 97.
    Sakai A, Suzuki C, Masui Y, Kuramashi A, Takatori K, Tanaka N (2007) The activities of mycotoxins derived from Fusarium and related substances in a short-term transformation assay using v-Ha-ras-transfected BALB/3T3 cells (Bhas 42 cells). Mutat Res 630: 103CrossRefGoogle Scholar
  98. 98.
    Gouze ME, Laffitte J, Dedieu G, Galinier A, Thouvenot JP, Oswald IP, Galtier P (2005) Individual and combined effects of low oral doses of deoxynivalenol and nivalenol in mice. Cell Mol Biol (Noisy-le-grand) 51: 809Google Scholar
  99. 99.
    Hinoshita F, Suzuki Y, Yokoyama K, Hara S, Yamada A, Ogura Y, Hashimoto H, Tomura S, Marumo F, Ueno Y (1997) Experimental IgA nephropathy induced by a low-dose environmental mycotoxin, nivalenol. Nephron 75: 469CrossRefGoogle Scholar
  100. 100.
    Poapolathep A, Nagata T, Suzuki H, Kumagai S, Doi K (2003) Development of early apopotosis and changes in lymphocyte subsets in lymphoid organs of mice orally inoculated with nivalenol. Exp Mol Pathol 75: 74CrossRefGoogle Scholar
  101. 101.
    Choi CY, Nakajima-Adachi H, Kaminogawa S, Sugita-Konishi Y (2000) Nivalenol inhibits total and antigen-specific IgE production in mice. Toxicol Appl Pharmacol 165: 94CrossRefGoogle Scholar
  102. 102.
    Ohtsubo K, Yamad MA, Saito M (1968) Inhibitory effect of nivalenol, a toxic metabolite of fusarium nivale, on the growth cycle and biopolymer synthesis of HELA cells. Jpn J med Sci Biol 21: 185Google Scholar
  103. 103.
    Ueno Y, Hosoya M, Morita Y, Ueno I, Tatsuno T (1968) Inhibition of the protein synthesis in rabbit reticulocyte by Nivalenol, a toxic principle isolated from Fusarium nivale-growing rice. J Biochem 64: 479Google Scholar
  104. 104.
    Sundstøl Eriksen G, Pettersson H, Lundh T (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42: 619CrossRefGoogle Scholar
  105. 105.
    Bhat RV, Beedu SR, Ramakrishna Y, Munshi KL (1989) Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India. Lancet 1: 35CrossRefGoogle Scholar
  106. 106.
    Bhat RV, Ramakrishna Y, Sashidhar RB (1989) Outbreak of mycotoxicosis in Kashmir Valley, India. Nutr News Natl Inst Nutr 10: 5Google Scholar
  107. 107.
    Schothorst RC, Jekel AA (2001) Determination of trichothecenes in wheat by capillary gas chromatography with flame ionisation detection. Food Chemistry 73: 111CrossRefGoogle Scholar
  108. 108.
    Lauren DR, Greenhalgh R (1987) Simultaneous analysis of nivalenol and deoxynivalenol in cereals by liquid chromatography. J. Assoc. off. Anal. Chem. 70: 479Google Scholar
  109. 109.
    Razzazi-Fazeli E, Böhm J, Luf W (1999) Determination of nivalenol and deoxynivalenol in wheat using liquid chromatography-mass spectrometry with negative ion atmospheric pressure chemical ionisation. J. Chromatogr. A 854: 45CrossRefGoogle Scholar
  110. 110.
    Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T, Toriba A, Hayakawa K (2009) Determination of nivalenol and deoxynivalenol by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 23: 3119CrossRefGoogle Scholar
  111. 111.
    Walker F, Meier B (1998) Determination of the Fusarium mycotoxins nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, and 15-O-acetyl-4-deoxynivalenol in contaminated whole wheat flour by liquid chromatography with diode array detection and gas chromatography with electron capture detection. J. AOAC Int. 81:741Google Scholar
  112. 112.
    Tanaka T, Hasegawa A, Matsuki Y, Ishii K, Ueno Y (1985) Improved methodology for the simultaneous detection of the trichothecene mycotoxins deoxynivalenol and nivalenol in cereals. Food add Contam 2: 125CrossRefGoogle Scholar
  113. 113.
    Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20: 2649CrossRefGoogle Scholar
  114. 114.
    Scott, PM (1995) Official methods of analysis of AOAC International (Cunnif, P., ed.), AOAC INTERNATIONAL, Gaithersburg, MD, Chapter 49: 1Google Scholar
  115. 115.
    Scott PM, Lombaert GA, Pellaers P, Bacler S, Kanhere SR, Sun WF, Lau PY, Weber D (1989) Application of capillary gas chromatography to a survey of wheat for five trichothecenes. Food Add Contam 6: 489CrossRefGoogle Scholar
  116. 116.
    Scott PM, Kanhere SR, Tarter EJ (1986) Determination of nivalenol and deoxynivalenol in cereals by electron-capture gas chromatography. J Assoc Off Anal Chem. 69: 889Google Scholar
  117. 117.
    Sagawa N, Takino T, Kurogochi, S (2006) A simple method with liquid chromatography/tandem mass spectrometry for the determination of the six trichothecene mycotoxins in rice medium. Biosci Biotechnol Biochem. 70: 230CrossRefGoogle Scholar
  118. 118.
    Malachova A, Cerkal R, Ehrenbergerova J, Dzuman Z, Vaculova K, Hajslova (2010) Fusarium mycotoxins in various barley cultivars and their transfer into malt. J Sci Food Agric. 90: 2495CrossRefGoogle Scholar
  119. 119.
    Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T (2006) Development of a liquid chromatography/time-of-flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Commun Mass Spectrom. 20: 1422CrossRefGoogle Scholar
  120. 120.
    Weidenborner M (2008) Mycotoxins in Food stuffs, Springer Science + Business Media, LLCGoogle Scholar
  121. 121.
    Yuwai KE, Rao KS, Singh K, Tanaka T, Ueno Y (1994) Occurrence of nivalenol, deoxynivalenol, and zearalenone in imported cereals in Papua, New Guinea. Natural Toxins 2: 19CrossRefGoogle Scholar
  122. 122.
    Food Safety Commision (Japan) report (2010) (available at : Cited 8 Mar 2010
  123. 123.
    Ryu JC, Yang JS, Song YS, Kwon OS, Park J, Chang IM (1996) Survey of natural occurrence of trichothecene mycotoxins and zearalenone in Korean cereals harvested in 1992 using gas chromatography/mass spectrometry. Food Addit Contam. 13: 333CrossRefGoogle Scholar
  124. 124.
    Lee T, Lee SH, Lee SH, Shin JY, Yun JC, Lee YW, Ryu JG (2011) Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J Food Prot. 74: 1169CrossRefGoogle Scholar
  125. 125.
    LI Feng-qin, YU Chuan-chuan, SHAO Bing, WANG Wei, YU Hong-xia (2011) Natural occurrence of masked deoxyniivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chin J Prev Med. 45:57Google Scholar
  126. 126.
    Turner PC (2010) Deoxynivalenol and nivalenol occurrence and ezposure assessment. World Mycotoxin Journal 3: 315CrossRefGoogle Scholar
  127. 127.
    IARC (1993) IARC monographs on the Evaluation of carcinogenic risks to humans, Vol. 56, Some naturally occurring substances: Food items and constituents, Heterocyclic aromatic amines and mycotoxins. P.397Google Scholar
  128. 128.
    European Commision. Scientific Committee on Food (2002) Opinion of the Scientific Committeeb on Food on Fusarium Toxins. Part 6: SCF/CS/CNTM/MYC/27 Final.Google Scholar
  129. 129.
    Yoshizawa T, Jin YZ (1995) Natural occurrence of acetylated derivatives of deoxynivalenol and nivalenol in wheat and barley in Japan. Food Add. Contam. 12: 68x9Google Scholar
  130. 130.
    130 Sugiyama K, Muroi M, Tanamoto K, Nishijima M, Sugita-Konishi Y (2010) Toxicol Lett 192:150CrossRefGoogle Scholar
  131. 131.
    Yoshizawa T, Jin YZ (1995) Food Add Contam 12:689CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of MicrobiologyNational Institute of Health SciencesSetagaya-ku, TokyoJapan
  2. 2.Division of Molecular and Cellular Biology, Laboratory of Gene Regulation, Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural SciencesNagoya UniversityNagoya, AichiJapan

Personalised recommendations