Advertisement

Natural Products pp 2813-2851 | Cite as

Metabolic Engineering of Isoprenoid Biosynthesis

  • Anne Pribat
  • Lisa Boureau
  • Anne Mortain-Bertrand
  • Linda S. Bert
  • Dominique Rolin
  • Emeline Teyssier
  • Philippe Gallusci
Reference work entry

Abstract

Isoprenoids constitute one of the largest families of natural compounds. They play essential functions in plant growth and development and furnish compounds of high interest for humans. Here, we present the current knowledge on isoprenoid metabolism before describing the strategies that have been used for isoprenoid metabolic engineering. We discuss the advantages and drawbacks of using microorganisms and plants as cell platform for the production of isoprenoids of interest.

Keywords

Carotenoid Essential oil Isoprenoid Metabolic engineering Methylerythritol phosphate Mevalonate Terpene synthase Terpenoid Transgenic plants Volatile terpene 

Abbreviations

ADS

Amorpha 4,11-diene synthase

CRY2

Cryptochrome 2

DET1

De-etiolated 1

DMAPP

Dimethylallyl diphosphate

DXP

1-deoxy-d-xylulose 5-phosphate

DXR

1-deoxy-d-xylulose 5-phosphate

FPP

Farnesyl diphosphate

FPS

Farnesyl diphosphate synthase

GGPP

Geranyl geranyl diphosphate

GGPS

Geranyl geranyl diphosphate synthase

GPP

Geranyl diphosphate

GPS

Geranyl diphosphate synthase

HMG

3-hydroxyl-3-methylglutaryl

HMGR

3-hydroxyl-3-methylglutaryl reductase

IDS

Isoprenyl diphosphate synthase

IPP

Isopentenyl diphosphate

IS

Isoprene synthase

MEP

Methyl-d-erythritol 4-phosphate

MGT

Multigene transfer

MVA

Acetate/mevalonate

NES1

Nerolidol synthase

NPP

Neryl diphosphate

PSY

Phytoene synthase

PTS

Prenyltransferase

SqS

Squalene synthase

TPS

Terpene synthase

VOCS

Volatile organic compounds.

Notes

Acknowledgments

We wish to thank Dr Sophie Colombié for critical reading of this manuscript. Dr Anne Pribat was in receipt of a grant from the French National Research Agency (ANR) in the frame of the “Polyterp” project.

References

  1. 1.
    Thulasiram HV, Erickson HK, Poulter CD (2007) Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science 316:73–76CrossRefGoogle Scholar
  2. 2.
    Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291CrossRefGoogle Scholar
  3. 3.
    Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–634CrossRefGoogle Scholar
  4. 4.
    Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414CrossRefGoogle Scholar
  5. 5.
    Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175CrossRefGoogle Scholar
  6. 6.
    Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184CrossRefGoogle Scholar
  7. 7.
    Finley JW, Kong A-N, Hintze KJ, Jeffery EH, Ji LL, Lei XG (2011) Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem 59:6837–6846CrossRefGoogle Scholar
  8. 8.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  9. 9.
    Liu B, Wang H, Du Z, Li G, Ye H (2011) Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 30:689–694CrossRefGoogle Scholar
  10. 10.
    Greay S, Hammer K (2011) Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochem Rev: 1–6Google Scholar
  11. 11.
    Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci 98:13595–13600CrossRefGoogle Scholar
  12. 12.
    Koepp AE, Hezari M, Zajicek J, Vogel BS, LaFever RE, Lewis NG, Croteau R (1995) Cyclization of geranylgeranyl diphosphate to taxa-4 (5), 11 (12) -diene is the committed step of taxol biosynthesis in pacific yew. J Biol Chem 270:8686–8690CrossRefGoogle Scholar
  13. 13.
    Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355CrossRefGoogle Scholar
  14. 14.
    Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537CrossRefGoogle Scholar
  15. 15.
    Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424CrossRefGoogle Scholar
  16. 16.
    Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84:1003–1019CrossRefGoogle Scholar
  17. 17.
    Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci: 1–20Google Scholar
  18. 18.
    Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523CrossRefGoogle Scholar
  19. 19.
    Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268CrossRefGoogle Scholar
  20. 20.
    Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415CrossRefGoogle Scholar
  21. 21.
    Schörken U, Kempers P (2009) Lipid biotechnology: industrially relevant production processes. Eur J Lipid Sci Technol 111:627–645CrossRefGoogle Scholar
  22. 22.
    Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176CrossRefGoogle Scholar
  23. 23.
    Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189CrossRefGoogle Scholar
  24. 24.
    Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145CrossRefGoogle Scholar
  25. 25.
    Fraser PD, Enfissi EMA, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204CrossRefGoogle Scholar
  26. 26.
    Van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS One 5:e14222CrossRefGoogle Scholar
  27. 27.
    Yu F, Utsumi R (2009) Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell Mol Life Sci 66:3043–3052CrossRefGoogle Scholar
  28. 28.
    Withers S, Keasling J (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990CrossRefGoogle Scholar
  29. 29.
    Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25CrossRefGoogle Scholar
  30. 30.
    Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili M, Cusidó R, Palazón J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anticancer Agents Med Chem 9:109–121CrossRefGoogle Scholar
  31. 31.
    Rohmer M, Knani M, Pascale S, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524Google Scholar
  32. 32.
    Kovacs WJ, Olivier LM, Krisans SK (2002) Central role of peroxisomes in isoprenoid biosynthesis. Prog Lipid Res 41:369–391CrossRefGoogle Scholar
  33. 33.
    Kovacs W, Tape K, Shackelford J, Duan X, Kasumov T, Kelleher J, Brunengraber H, Krisans S (2007) Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 127:273–290CrossRefGoogle Scholar
  34. 34.
    Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y (2008) Peroxisomal localization of arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228CrossRefGoogle Scholar
  35. 35.
    Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183CrossRefGoogle Scholar
  36. 36.
    Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274CrossRefGoogle Scholar
  37. 37.
    Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148CrossRefGoogle Scholar
  38. 38.
    Towler M, Weathers P (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26:2129–2136CrossRefGoogle Scholar
  39. 39.
    McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (mentha X piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56CrossRefGoogle Scholar
  40. 40.
    Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938CrossRefGoogle Scholar
  41. 41.
    Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514CrossRefGoogle Scholar
  42. 42.
    Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-Farnesyl pyrophosphate in the wild tomato solanum habrochaites. Plant Cell Online 21:301–317CrossRefGoogle Scholar
  43. 43.
    Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1:570–578CrossRefGoogle Scholar
  44. 44.
    Wang KC, Ohnuma S-I (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1529:33–48CrossRefGoogle Scholar
  45. 45.
    Liang P-H, Ko T-P, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354CrossRefGoogle Scholar
  46. 46.
    Fujihashi M, Zhang Y-W, Higuchi Y, Li X-Y, Koyama T, Miki K (2001) Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc Natl Acad Sci 98:4337–4342CrossRefGoogle Scholar
  47. 47.
    Takahashi S, Koyama T (2006) Structure and function of cis-prenyl chain elongating enzymes. Chem Rec 6:194–205CrossRefGoogle Scholar
  48. 48.
    Asawatreratanakul K, Zhang Y-W, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. Eur J Biochem 270:4671–4680CrossRefGoogle Scholar
  49. 49.
    Post J, van Deenen N, Fricke J, Kowalski N, Wurbs D, Schaller H, Eisenreich W, Huber C, Twyman RM, Prüfer D, Gronover CS (2012) Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol 158:1406–1417CrossRefGoogle Scholar
  50. 50.
    Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci 106:10865–10870CrossRefGoogle Scholar
  51. 51.
    Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0143Google Scholar
  52. 52.
    Tarshis LC, Proteau JP, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci 93:15018–15023CrossRefGoogle Scholar
  53. 53.
    Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98:1263–1276CrossRefGoogle Scholar
  54. 54.
    Liang P-H (2009) Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48:6562–6570CrossRefGoogle Scholar
  55. 55.
    Oldfield E, Lin F-Y (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed 51:1124–1137CrossRefGoogle Scholar
  56. 56.
    Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol 141:220–231CrossRefGoogle Scholar
  57. 57.
    Hsiao Y-Y, Jeng M-F, Tsai W-C, Chuang Y-C, Li C-Y, Wu T-S, Kuoh C-S, Chen W-H, Chen H-H (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2–4D motif. Plant J 55:719–733CrossRefGoogle Scholar
  58. 58.
    Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2011) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in picea abies. Plant Physiol 152:639–655CrossRefGoogle Scholar
  59. 59.
    Hsieh F-L, Chang T-H, Ko T-P, Wang AHJ (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090CrossRefGoogle Scholar
  60. 60.
    Ducluzeau A-L, Wamboldt Y, Elowsky CG, Mackenzie SA, Schuurink RC, Basset GJC (2012) Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J 69:366–375CrossRefGoogle Scholar
  61. 61.
    Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304CrossRefGoogle Scholar
  62. 62.
    Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229CrossRefGoogle Scholar
  63. 63.
    Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637CrossRefGoogle Scholar
  64. 64.
    Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927CrossRefGoogle Scholar
  65. 65.
    Keeling CI, Weisshaar S, Lin RPC, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci 105:1085–1090CrossRefGoogle Scholar
  66. 66.
    Aubourg SA, Lecharny AL, Bohlmann JB (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745CrossRefGoogle Scholar
  67. 67.
    Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789CrossRefGoogle Scholar
  68. 68.
    Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, Sumner LW, Dixon RA (2010) Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell Online 22:850–866CrossRefGoogle Scholar
  69. 69.
    Keeling C, Weisshaar S, Ralph S, Jancsik S, Hamberger B, Dullat H, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43CrossRefGoogle Scholar
  70. 70.
    Hayashi K-i, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181CrossRefGoogle Scholar
  71. 71.
    Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell Online 6:1509–1518Google Scholar
  72. 72.
    Yamaguchi S, Sun T-p, Kawaide H, Kamiya Y (1998) The GA2 locus of arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271–1278CrossRefGoogle Scholar
  73. 73.
    Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell Online 15:481–494CrossRefGoogle Scholar
  74. 74.
    Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966CrossRefGoogle Scholar
  75. 75.
    Fäldt J, Arimura G-I, Gershenzon J, Takabayashi J, Bohlmann J (2003) Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216:745–751Google Scholar
  76. 76.
    Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771CrossRefGoogle Scholar
  77. 77.
    Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell Online 20:1152–1168CrossRefGoogle Scholar
  78. 78.
    Bohlmann J, Martin D, Oldham NJ, Gershenzon J (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375:261–269CrossRefGoogle Scholar
  79. 79.
    Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell Online 16:3110–3131CrossRefGoogle Scholar
  80. 80.
    Bleeker P, Spyropoulou E, Diergaarde P, Volpin H, De Both M, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E, Haring M, Schuurink R (2011) RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol 77:323–336CrossRefGoogle Scholar
  81. 81.
    Cankar K, Houwelingen AV, Bosch D, Sonke T, Bouwmeester H, Beekwilder J (2011) A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett 585:178–182CrossRefGoogle Scholar
  82. 82.
    Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416CrossRefGoogle Scholar
  83. 83.
    Nelson D (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev 5:193–204CrossRefGoogle Scholar
  84. 84.
    Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. The Arabidopsis Book 9:e0144Google Scholar
  85. 85.
    Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci 98:8915–8920CrossRefGoogle Scholar
  86. 86.
    Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci 108:16944–16949CrossRefGoogle Scholar
  87. 87.
    Ehlting J, Sauveplane V, Olry A, Ginglinger J-F, Provart N, Werck-Reichhart D (2008) An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8:47CrossRefGoogle Scholar
  88. 88.
    Hassan AMM (2011) A review of secondary metabolites from plant materials for post harvest storage. Int J Pure Appl Sci Technol 6:94–102Google Scholar
  89. 89.
    Bouvier F, Suire C, D'Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252CrossRefGoogle Scholar
  90. 90.
    Croteau R (1988) Catabolism of monoterpenes in essential oil plants. In: Lawrence BM, Mookherjee BD, Willis BJ (eds) Flavors and fragrances: a world perspective. Proceedings of the 10th international congress of essential oils, fragrances and flavors, Washington, DC, November, 1986. Elsevier Science, AmsterdamGoogle Scholar
  91. 91.
    Little DB, Croteau R (1999) Biochemistry of essential oil terpenes: a thirty year overview. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry: thirty years of progress. Kluwer/Plenum, New YorkGoogle Scholar
  92. 92.
    Loza-Tavera H (1999) Monoterpenes in essential oils: biosynthesis and properties. Adv Exp Med Biol 464:49–62CrossRefGoogle Scholar
  93. 93.
    Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens*. New Phytol 170:657–675CrossRefGoogle Scholar
  94. 94.
    Kainulainen P, Satka H, Mustaniemi A, Holopainen JK, Oksanen J (1993) Conifer aphids in an air-polluted environment. II. Host plant quality. Environ Pollut 80:193–200CrossRefGoogle Scholar
  95. 95.
    Turtola S, Manninen AM, Holopainen JK, Levula T, Raitio H, Kainulainen P (2002) Secondary metabolite concentrations and terpene emissions of scots pine xylem after long-term forest fertilization. J Environ Qual 31:1694–1701CrossRefGoogle Scholar
  96. 96.
    Turtola S, Manninen A-M, Rikala R, Kainulainen P (2003) Drought stress alters the concentration of wood terpenoids in scots pine and Norway Spruce seedlings. J Chem Ecol 29:1981–1995CrossRefGoogle Scholar
  97. 97.
    Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol 20:1087–1095CrossRefGoogle Scholar
  98. 98.
    Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiol 137:369–382CrossRefGoogle Scholar
  99. 99.
    Raffa KF, Smalley EB (1995) Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295CrossRefGoogle Scholar
  100. 100.
    Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190CrossRefGoogle Scholar
  101. 101.
    Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Ann Rev Plant Physiol Plant Mol Biol 52:689–724CrossRefGoogle Scholar
  102. 102.
    Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586CrossRefGoogle Scholar
  103. 103.
    Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018CrossRefGoogle Scholar
  104. 104.
    McKay SAB, Hunter WL, Godard K-A, Wang SX, Martin DM, Bohlmann J, Plant AL (2003) Insect attack and wounding induce traumatic resin duct development and gene expression of (–)-pinene synthase in sitka spruce. Plant Physiol 133:368–378CrossRefGoogle Scholar
  105. 105.
    Rohloff J (2004) Essential oil drugs – terpene composition of aromatic herbs. In: Dris R, Jain SM (eds) Production practices and quality assessment of food crops, vol 3, Quality Handling and Evaluation. Kluwer, DordrechtGoogle Scholar
  106. 106.
    Sangwan NK, Dhindsa KS, Malik OP, Sharma GD, Paroda RS (1982) Quantitative changes in levels of essential oil in C. martinii var motia during different growth stages and on ageing the harvested crop in field and Laboratory. In: Proceedings of the national seminar on medicinal and aromatic plants, IndiaGoogle Scholar
  107. 107.
    Maeda E, Miyake H, Tomaru K (1999) Ultrastructure of mesophyll glands secreting the aromatic substances in Patchouli leaves. Crop Science Society of Japan, TokyoGoogle Scholar
  108. 108.
    Lewinsohn E, Dudai N, Tadmor Y, Katzir I, Ravid UZI, Putievsky ELI, Joel DM (1998) Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus(DC.) Stapf., Poaceae). Ann Bot 81:35–39CrossRefGoogle Scholar
  109. 109.
    Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX (2010) TrichOME: a comparative omics database for plant trichomes. Plant Physiol 152:44–54CrossRefGoogle Scholar
  110. 110.
    Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–214CrossRefGoogle Scholar
  111. 111.
    McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–224CrossRefGoogle Scholar
  112. 112.
    Turner GW, Gershenzon J, Croteau RB (2000) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124:655–664CrossRefGoogle Scholar
  113. 113.
    Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89:1351–1357CrossRefGoogle Scholar
  114. 114.
    McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187:445–454CrossRefGoogle Scholar
  115. 115.
    Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68CrossRefGoogle Scholar
  116. 116.
    McDowell ET, Kapteyn J, Schmidt A, Li C, Kang J-H, Descour A, Shi F, Larson M, Schilmiller A, An L, Jones AD, Pichersky E, Soderlund CA, Gang DR (2011) Comparative functional genomic analysis of solanum glandular trichome Types. Plant Physiol 155:524–539CrossRefGoogle Scholar
  117. 117.
    Mauseth JD (1988) Plant anatomy. Benjamin/Cummings, Menlo ParkGoogle Scholar
  118. 118.
    van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529CrossRefGoogle Scholar
  119. 119.
    Jayanthy T, Sankaranarayanan P (2005) Measurement of dry rubber content in latex using microwave technique. Meas Sci Rev 5:50–54Google Scholar
  120. 120.
    Cunningham F (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417CrossRefGoogle Scholar
  121. 121.
    Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445CrossRefGoogle Scholar
  122. 122.
    Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell Online 7:1027–1038Google Scholar
  123. 123.
    Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235CrossRefGoogle Scholar
  124. 124.
    Deruère J, Römer S, d'Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell Online 6:119–133Google Scholar
  125. 125.
    Al-Babili S, Hartung W, Kleinig H, Beyer P (1999) CPTA modulates levels of carotenogenic proteins and their mRNAs and affects carotenoid and ABA content as well as chromoplast structure in Narcissus pseudonarcissus flowers. Plant Biol 1:607–612CrossRefGoogle Scholar
  126. 126.
    Vranovà E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333CrossRefGoogle Scholar
  127. 127.
    Croteau R (1977) Site of monoterpene biosynthesis in Majorana hortensis leaves. Plant Physiol 59:519–520CrossRefGoogle Scholar
  128. 128.
    Croteau R, Felton M, Karp F, Kjonaas R (1981) Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol 67:820–824CrossRefGoogle Scholar
  129. 129.
    Singh N, Luthra R, Sangwan RS (1989) Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus)1. Planta Med 55:254–256CrossRefGoogle Scholar
  130. 130.
    Biswas K, Foster A, Aung T, Mahmoud S (2009) Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiologiae Plantarum 31:13–19CrossRefGoogle Scholar
  131. 131.
    Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J (2003) (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell Online 15:1227–1241CrossRefGoogle Scholar
  132. 132.
    Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239CrossRefGoogle Scholar
  133. 133.
    Guitton Y, Nicolè F, Moja S, Valot N, Legrand S, Jullien F, Legendre L (2010) Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development. Physiol Plant 138:150–163CrossRefGoogle Scholar
  134. 134.
    Aros D, Gonzalez V, Allemann RK, Müller CT, Rosati C, Rogers HJ (2012) Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J Exp Bot 63:2739–2752CrossRefGoogle Scholar
  135. 135.
    Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. J Plant Growth Regul 34:3–21CrossRefGoogle Scholar
  136. 136.
    Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485CrossRefGoogle Scholar
  137. 137.
    Müller-Schwarze D, Thoss V (2008) Defense on the rocks: low monoterpenoid levels in plants on pillars without mammalian herbivores. J Chem Ecol 34:1377–1381CrossRefGoogle Scholar
  138. 138.
    Opitz S, Kunert G, Gershenzon J (2008) Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J Chem Ecol 34:508–522CrossRefGoogle Scholar
  139. 139.
    Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072CrossRefGoogle Scholar
  140. 140.
    Demmig-Adams B, Adams Iii WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  141. 141.
    Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113CrossRefGoogle Scholar
  142. 142.
    Li L, Van Eck J (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581–585CrossRefGoogle Scholar
  143. 143.
    Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67CrossRefGoogle Scholar
  144. 144.
    Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower or gene encodes a DNAj cysteine-rich domain-containing protein that mediates high levels of ß-carotene accumulation. Plant Cell Online 18:3594–3605CrossRefGoogle Scholar
  145. 145.
    Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223CrossRefGoogle Scholar
  146. 146.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefGoogle Scholar
  147. 147.
    Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56CrossRefGoogle Scholar
  148. 148.
    Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104Google Scholar
  149. 149.
    Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283CrossRefGoogle Scholar
  150. 150.
    Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci 105:18232–18237CrossRefGoogle Scholar
  151. 151.
    Farhi M, Marhevka E, Ben-Ari J, Algamas-Dimantov A, Liang Z, Zeevi V, Edelbaum O, Spitzer-Rimon B, Abeliovich H, Schwartz B, Tzfira T, Vainstein A (2011) Generation of the potent anti-malarial drug artemisinin in tobacco. Nat Biotechnol 29:1072–1074CrossRefGoogle Scholar
  152. 152.
    Daviet L, Schalk M (2010) Biotechnology in plant essential oil production: progress and perspective in metabolic engineering of the terpene pathway. Flavour Frag J 25:123–127CrossRefGoogle Scholar
  153. 153.
    Vranová E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated database of arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol 156:1655–1660CrossRefGoogle Scholar
  154. 154.
    Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefGoogle Scholar
  155. 155.
    Tugizimana F, Steenkamp PA, Piater LA, Dubery IA (2012) Ergosterol-induced sesquiterpenoid synthesis in tobacco cells. Molecules 17:1698–1715CrossRefGoogle Scholar
  156. 156.
    Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2010) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci 108:16944–16949CrossRefGoogle Scholar
  157. 157.
    Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633CrossRefGoogle Scholar
  158. 158.
    Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602CrossRefGoogle Scholar
  159. 159.
    Nafis T, Akmal M, Ram M, Alam P, Ahlawat S, Mohd A, Abdin M (2011) Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol Rep 5:53–60CrossRefGoogle Scholar
  160. 160.
    Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190CrossRefGoogle Scholar
  161. 161.
    Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Micro 7:129–143Google Scholar
  162. 162.
    Martin VJJ, Yoshikuni Y, Keasling JD (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol Bioeng 75:497–503CrossRefGoogle Scholar
  163. 163.
    Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84CrossRefGoogle Scholar
  164. 164.
    Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207CrossRefGoogle Scholar
  165. 165.
    Kim S-W, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415CrossRefGoogle Scholar
  166. 166.
    Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci 107:13654–13659CrossRefGoogle Scholar
  167. 167.
    Vadali RV, Fu Y, Bennett GN, San K-Y (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561CrossRefGoogle Scholar
  168. 168.
    Paradise EM, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100:371–378CrossRefGoogle Scholar
  169. 169.
    Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRefGoogle Scholar
  170. 170.
    Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242CrossRefGoogle Scholar
  171. 171.
    Misawa N, Nodate M, Otomatsu T, Shimizu K, Kaido C, Kikuta M, Ideno A, Ikenaga H, Ogawa J, Shimizu S, Shindo K (2011) Bioconversion of substituted naphthalenes and β-eudesmol with the cytochrome P450 BM3 variant F87V. Appl Microbiol Biotechnol 90:147–157CrossRefGoogle Scholar
  172. 172.
    Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits. PLoS One 7:e32221CrossRefGoogle Scholar
  173. 173.
    Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–420CrossRefGoogle Scholar
  174. 174.
    D'Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214CrossRefGoogle Scholar
  175. 175.
    Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Blackwell, Oxford, Royaume-UNIGoogle Scholar
  176. 176.
    Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X (2009) Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep 28:1737–1746CrossRefGoogle Scholar
  177. 177.
    Davidovich-Rikanati R, Lewinsohn E, Bar E, Iijima Y, Pichersky E, Sitrit Y (2008) Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J 56:228–238CrossRefGoogle Scholar
  178. 178.
    Ohara K, Matsunaga E, Nanto K, Yamamoto K, Sasaki K, Ebinuma H, Yazaki K (2010) Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA. Plant Biotechnol J 8:28–37CrossRefGoogle Scholar
  179. 179.
    Lücker J, Schwab W, van Hautum B, Blaas J, van der Plas LHW, Bouwmeester HJ, Verhoeven HA (2004) Increased and Altered Fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol 134:510–519CrossRefGoogle Scholar
  180. 180.
    Muñoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng 10:166–177CrossRefGoogle Scholar
  181. 181.
    Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134CrossRefGoogle Scholar
  182. 182.
    Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111CrossRefGoogle Scholar
  183. 183.
    Ohara K, Ujihara T, Endo T, Sato F, Yazaki K (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642CrossRefGoogle Scholar
  184. 184.
    Hohn TM, Ohlrogge JB (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol 97:460–462CrossRefGoogle Scholar
  185. 185.
    Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NCA (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465CrossRefGoogle Scholar
  186. 186.
    Yu X, Jones H, Ma Y, Wang G, Xu Z, Zhang B, Zhang Y, Ren G, Pickett J, Xia L (2012) (E)-β-Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum). Funct Integr Genomics 12:207–213CrossRefGoogle Scholar
  187. 187.
    Banerjee S, Zehra M, Gupta MM, Kumar S (1997) Agrobacterium rhizogenes-mediated transformation of Artemisia annua: production of transgenic plants. Thieme, Stuttgart/AllemagneGoogle Scholar
  188. 188.
    Han J-L, Liu B-Y, Ye H-C, Wang H, Li Z-Q, Li G-F (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48:482–487CrossRefGoogle Scholar
  189. 189.
    Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161CrossRefGoogle Scholar
  190. 190.
    Chen D-H, Ye H-C, Li G-F (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185CrossRefGoogle Scholar
  191. 191.
    Chen D-H, Liu C-J, Ye H-C, Li G-F, Liu B-Y, Meng Y-L, Chen X-Y (1999) Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tissue Organ Cult 57:157–162CrossRefGoogle Scholar
  192. 192.
    Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75:1453–1458CrossRefGoogle Scholar
  193. 193.
    Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179–187CrossRefGoogle Scholar
  194. 194.
    Alam P, Abdin M (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30:1919–1928CrossRefGoogle Scholar
  195. 195.
    Wang H, Nagegowda DA, Rawat R, Bouvier-Navé P, Guo D, Bach TJ, Chye M-L (2012) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42CrossRefGoogle Scholar
  196. 196.
    Morris WL, Ducreux LJM, Shepherd T, Lewinsohn E, Davidovich-Rikanati R, Sitrit Y, Taylor MA (2011) Utilisation of the MVA pathway to produce elevated levels of the sesquiterpene α-copaene in potato tubers. Phytochemistry 72:2288–2293CrossRefGoogle Scholar
  197. 197.
    Enfissi EMA, Fraser PD, Lois L-M, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27CrossRefGoogle Scholar
  198. 198.
    Carretero-Paulet L, Cairó A, Botella-Pavía P, Besumbes O, Campos N, Boronat A, Rodríguez-Concepción M (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62:683–695CrossRefGoogle Scholar
  199. 199.
    Kovacs K, Zhang L, Linforth R, Whittaker B, Hayes C, Fray R (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res 16:121–126CrossRefGoogle Scholar
  200. 200.
    Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R, Voster A, Verstappen FWA, Bouwmeester HJ, Jongsma MA (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 13:414–425CrossRefGoogle Scholar
  201. 201.
    Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13:474–481CrossRefGoogle Scholar
  202. 202.
    Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJH, Ross ARS, Covello PS (2008) The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508CrossRefGoogle Scholar
  203. 203.
    Zhang Y, Nowak G, Reed DW, Covello PS (2011) The production of artemisinin precursors in tobacco. Plant Biotechnol J 9:445–454CrossRefGoogle Scholar
  204. 204.
    Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343Google Scholar
  205. 205.
    Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447CrossRefGoogle Scholar
  206. 206.
    Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-Carotene) biosynthetic pathway into (Carotenoid-Free) rice endosperm. Science 287:303–305CrossRefGoogle Scholar
  207. 207.
    Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487CrossRefGoogle Scholar
  208. 208.
    Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332CrossRefGoogle Scholar
  209. 209.
    Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350CrossRefGoogle Scholar
  210. 210.
    Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R, Voster A, Verstappen FWA, Bouwmeester HJ, Jongsma MA (2005) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 13:414–425CrossRefGoogle Scholar
  211. 211.
    Zeevi V, Liang Z, Arieli U, Tzfira T (2012) Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol 158:132–144CrossRefGoogle Scholar
  212. 212.
    Wani SH, Haider N, Kumar H, Singh N (2010) Plant plastid engineering. Current Genomics 11:500–512CrossRefGoogle Scholar
  213. 213.
    Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66CrossRefGoogle Scholar
  214. 214.
    Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa K-I, Fukusaki E, Miyake C (2008) Overexpression of 1-Deoxy-d-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J Biosci Bioeng 105:518–526CrossRefGoogle Scholar
  215. 215.
    Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28CrossRefGoogle Scholar
  216. 216.
    Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci 99:1092–1097CrossRefGoogle Scholar
  217. 217.
    Diretto G, Al-Babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Beyer P, Giuliano G (2010) Transcriptional-metabolic networks in β-carotene-enriched potato tubers: the long and winding road to the golden phenotype. Plant Physiol 154:899–912CrossRefGoogle Scholar
  218. 218.
    Stålberg K, Lindgren O, Ek B, Höglund A-S (2003) Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant J 36:771–779CrossRefGoogle Scholar
  219. 219.
    Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6:353–362CrossRefGoogle Scholar
  220. 220.
    Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci 107:11626–11631CrossRefGoogle Scholar
  221. 221.
    Jones MO, Piron-Prunier F, Marcel F, Piednoir-Barbeau E, Alsadon AA, Wahb-Allah MA, Al-Doss AA, Bowler C, Bramley PM, Fraser PD, Bendahmane A (2012) Characterisation of alleles of tomato light signalling genes generated by TILLING. Phytochemistry 79:78–86CrossRefGoogle Scholar
  222. 222.
    Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179–186CrossRefGoogle Scholar
  223. 223.
    Cazzonelli CI, Yin K, Pogson BJ (2009) Potential implications for epigenetic regulation of carotenoid biosynthesis during root and shoot development. Plant Signal Behav 4:339–341CrossRefGoogle Scholar
  224. 224.
    Enfissi EMA, Barneche F, Ahmed I, Lichtlé C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell Online 22:1190–1215CrossRefGoogle Scholar
  225. 225.
    Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895CrossRefGoogle Scholar
  226. 226.
    Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12:1529–1534CrossRefGoogle Scholar
  227. 227.
    Liu Y, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell Online 19:433–444CrossRefGoogle Scholar
  228. 228.
    Chinnusamy V, Gong Z, Zhu J-K (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195CrossRefGoogle Scholar
  229. 229.
    Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952CrossRefGoogle Scholar
  230. 230.
    Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208CrossRefGoogle Scholar
  231. 231.
    Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C (2004) Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J 40:344–354CrossRefGoogle Scholar
  232. 232.
    Wei S, Li X, Gruber MY, Li R, Zhou R, Zebarjadi A, Hannoufa A (2009) RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agric Food Chem 57:5326–5333CrossRefGoogle Scholar
  233. 233.
    Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agric Food Chem 58:9572–9578CrossRefGoogle Scholar
  234. 234.
    Wang E, Wagner G (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691Google Scholar
  235. 235.
    Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73:673–685CrossRefGoogle Scholar
  236. 236.
    Gutiérrez-Alcalá G, Calo L, Gros F, Caissard J-C, Gotor C, Romero LC (2005) A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J Exp Bot 56:2487–2494CrossRefGoogle Scholar
  237. 237.
    Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell Online 20:186–200CrossRefGoogle Scholar
  238. 238.
    Chow K-S, Wan K-L, Isa MNM, Bahari A, Tan S-H, Harikrishna K, Yeang H-Y (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440CrossRefGoogle Scholar
  239. 239.
    Ponciano G, McMahan CM, Xie W, Lazo GR, Coffelt TA, Collins-Silva J, Nural-Taban A, Gollery M, Shintani DK, Whalen MC (2012) Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue. Phytochemistry 79:57–66CrossRefGoogle Scholar
  240. 240.
    Nieuwenhuizen NJ, Green S, Atkinson RG (2010) Floral sesquiterpenes and their synthesis in dioecious kiwifruit. Plant Signal Behav 5:61–63CrossRefGoogle Scholar
  241. 241.
    Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168CrossRefGoogle Scholar
  242. 242.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  243. 243.
    Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181CrossRefGoogle Scholar
  244. 244.
    Télef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde J, Rolin D, Gallusci P (2006) Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 62:453–469CrossRefGoogle Scholar
  245. 245.
    Flores-Pérez Ú, Pérez-Gil J, Closa M, Wright LP, Botella-Pavía P, Phillips MA, Ferrer A, Gershenzon J, Rodríguez-Concepción M (2010) PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112CrossRefGoogle Scholar
  246. 246.
    Paetzold H, Garms S, Bartram S, Wieczorek J, Urós-Gracia E-M, Rodríguez-Concepción M, Boland W, Strack D, Hause B, Walter MH (2010) The isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol Plant 3:904–916CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anne Pribat
    • 1
  • Lisa Boureau
    • 1
  • Anne Mortain-Bertrand
    • 2
  • Linda S. Bert
    • 1
  • Dominique Rolin
    • 2
  • Emeline Teyssier
    • 2
  • Philippe Gallusci
    • 1
  1. 1.Université de Bordeaux 1, UMR 1332 de Biologie du Fruit et PathologieVillenave d’OrnonFrance
  2. 2.Université de Bordeaux 1, INRA, UMR 1332 de Biologie du Fruit et PathologieVillenave d’OrnonFrance

Personalised recommendations