Natural Products pp 2665-2691 | Cite as

Terpenes: Chemistry, Biological Role, and Therapeutic Applications

  • Priyanka P. Brahmkshatriya
  • Pathik S. BrahmkshatriyaEmail author
Reference work entry


Terpenoids are naturally occurring hydrocarbons produced by a wide variety of plants and animals. They are classified based on five-carbon (isoprene) units as their building blocks, numbering more than 55,000 molecules having been discovered till date. Different terpenes include hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30), and polyterpenes (>C30). Diverse functional roles of terpenoids have been critically studied and well-accepted now. Some of them include natural flavor additives for food or fragrances in perfumery and in traditional and alternate medicines as aromatherapy. Biosynthetically, terpenoids are formed via two major synthetic pathways: mevalonic acid (MVA) pathway and 2C-methyl-D-erythritol-4-phosphate (MEP) pathway. Biologically active terpenoids span various orders of magnitude. Most comprehensively studied of which is the effect of terpenes in prevention and treatment of cancer. Illustratively, Taxol derivative (paclitaxel and docetaxel) are among the widely used drugs in cancer chemotherapy. Other important therapeutic uses of terpenoids include antimicrobial, antifungal, antiviral, antihyperglycemic, anti-inflammatory, antioxidants, antiparasitic, immunomodulatory, and as skin permeation enhancer. Since many of these molecules are only found in very low levels in nature, their massive harvesting to obtain sufficient amounts of the drug including synthetic biology and metabolic engineering provides innovative approaches to increase the production of terpenoids.


Antibacterial anticancer antiparasitic anti-inflammatory antiviral biosynthesis isoprene unit 





Dimethylallyl pyrophosphate




Farnesyl pyrophosphate


Geranylgeranyl pyrophosphate


Geranyl pyrophosphate


Human immunodeficiency virus


Herpes simplex virus




Inducible nitric oxide synthetase


Isopentenyl pyrophosphate




Minimum inhibitory concentration


Mevalonic acid


Nuclear factor






Tumor necrosis factor


White blood cells


  1. 1.
    Hanson JR (2003) Natural products: the secondary metabolites. RSC, CambridgeGoogle Scholar
  2. 2.
    Keeling CI, Bohlmann J (2006) Genes, enzymes, and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675CrossRefGoogle Scholar
  3. 3.
    Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318Google Scholar
  4. 4.
    Wallach O (1887) Zur kenntnis der terpene und ätherischen oele. Justus Lieb Ann Chem 238:78CrossRefGoogle Scholar
  5. 5.
    Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357CrossRefGoogle Scholar
  6. 6.
    Lynen F, Eggerer H, Henning U, Kessel I (1958) Farnesyl-pyrophosphat und 3-Methyl-Δ3-butenyl-1-pyrophosphat, die biologischen vorstufen des squalens. Angew Chem 70:738–742CrossRefGoogle Scholar
  7. 7.
    Bloch K, Chaykin S, Phillips AH, de Waard A (1959) Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem 234:2595–2604Google Scholar
  8. 8.
    Tavormina PA, Gibbs MH, Huff JW (1956) Utilization of β-hydroxy-β-methyl-γ-valerolactone in cholesterol biosynthesis. J Am Chem Soc 78:4498–4499CrossRefGoogle Scholar
  9. 9.
    Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026Google Scholar
  11. 11.
    Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280CrossRefGoogle Scholar
  12. 12.
    Steele CL, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497CrossRefGoogle Scholar
  13. 13.
    Stoessl A, Stothers JB, Ward EB (1976) Sesquiterpenoid stress compounds of the solanaceae. Phytochemistry 15:855–872CrossRefGoogle Scholar
  14. 14.
    Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular recognition and function of plant isoprenoids. Prog Lipid Res 44:357–429CrossRefGoogle Scholar
  15. 15.
    Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133CrossRefGoogle Scholar
  16. 16.
    Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789CrossRefGoogle Scholar
  17. 17.
    Dereth RP, Jeanne MR, Bonnie B, Seiichi PTM (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314CrossRefGoogle Scholar
  18. 18.
    Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574CrossRefGoogle Scholar
  19. 19.
    Kazuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627CrossRefGoogle Scholar
  20. 20.
    Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430CrossRefGoogle Scholar
  21. 21.
    Dewick PM (2002) The biosynthesis of C-5-C-25 terpenoids compounds. Nat Prod Rep 19:181–222CrossRefGoogle Scholar
  22. 22.
    Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol 48:663–672Google Scholar
  23. 23.
    Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627CrossRefGoogle Scholar
  24. 24.
    Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoids biosynthesis in plants. J Biosci 28:637–646CrossRefGoogle Scholar
  25. 25.
    Carretero Paulet L, Ahumada I, Cunillera N, Rodriguez Concepcion M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591CrossRefGoogle Scholar
  26. 26.
    Lücker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J 27:315–324CrossRefGoogle Scholar
  27. 27.
    Elson CE, Yu SG (2004) The chemoprevention of cancer by mevalonate-derived constituents of fruits and vegetables. J Nutr 124:607–614Google Scholar
  28. 28.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71S–88SCrossRefGoogle Scholar
  29. 29.
    Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775S–778SGoogle Scholar
  30. 30.
    Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105:977–979Google Scholar
  31. 31.
    Reddy BS, Wang CX, Samaha H, Lubet R, Steele VE, Kelloff GJ, Rao CV (1997) Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res 57:420–425Google Scholar
  32. 32.
    Shi W, Gould MN (2002) Induction of cytostasis in mammary carcinoma cells treated with the anticancer agent perillyl alcohol. Carcinogenesis 23:131–142CrossRefGoogle Scholar
  33. 33.
    Crowell PL, Gould MN (1994) Chemoprevention and therapy of cancer by D-limonene. Crit Rev Oncog 5:1–22CrossRefGoogle Scholar
  34. 34.
    Bardon S, Foussard V, Fournel S, Loubat A (2002) Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett 181:187–194CrossRefGoogle Scholar
  35. 35.
    Gupta A, Myrdal PB (2004) Development of a perillyl alcohol topical cream formulation. Int J Pharm 269:373–383CrossRefGoogle Scholar
  36. 36.
    Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M (1999) Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res 43:79–92CrossRefGoogle Scholar
  37. 37.
    Carvalho CC, Fonseca MM (2006) Carvone: why and how should one bother to produce this terpene. Food Chem 95:413–422CrossRefGoogle Scholar
  38. 38.
    Dieras V (1998) Taxanes in combination with doxorubicin in the treatment of the treatment of metastatic breast cancer. Semin Oncol 25:18–22Google Scholar
  39. 39.
    Sgadari C, Toschi E, Palladino C et al (2000) Mechanism of paclitaxel activity in Kaposi’s sarcoma. J Immunol 165:509–517Google Scholar
  40. 40.
    Rowinsky EK, Citardi MJ, Noe DA, Donehower RC (1993) Sequence-dependent cytotoxic effects due to combinations of cisplatin and the antimicrotubule agents taxol and vincristine. J Cancer Res Clin Oncol 119:727–733CrossRefGoogle Scholar
  41. 41.
    Ogbourne SM, Suhrbier A, Jones B et al (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839CrossRefGoogle Scholar
  42. 42.
    Ersvaer E, Kittang AO, Hampson P, Sand K, Gjertsen BT, Lord JM, Bruserud O (2010) The protein kinase C Agonist PEP005 (Ingenol 3-Angelate) in the treatment of human cancer: a balance between efficacy and toxicity. Toxins 2:174–194CrossRefGoogle Scholar
  43. 43.
    Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238CrossRefGoogle Scholar
  44. 44.
    Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358CrossRefGoogle Scholar
  45. 45.
    Sills AK, Williams JI, Tyler BM et al (1998) Squalamine inhibits angiogenesis and solid tumor growth in vivo and pertubs embryonic vasculature. Cancer Res 58:2784–2792Google Scholar
  46. 46.
    Crowell PL, Chang RR, Ren ZB, Elson CE, Gould MN (1991) Selective inhibition of isoprenylation of 21–26-kDa proteins by the anticarcinogen D-limonene and its metabolites. J Biol Chem 266:17679–17685Google Scholar
  47. 47.
    Wiseman DA, Werner SR, Crowell PL (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21Cip1 and p27Kip1 in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320:1163–1170CrossRefGoogle Scholar
  48. 48.
    Burke YD, Ayoubi AS, Werner SR, McFarland BC, Heilman DK, Ruggeri BA, Crowell PL (2002) Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Res 22:3127–3134Google Scholar
  49. 49.
    Raphael TJ, Kuttan G (2003) Immunoregulatory activity of naturally occurring monoterpenes carvone, limonene and perillic acid. Immunopharmacol Immunotoxicol 25:285–294CrossRefGoogle Scholar
  50. 50.
    Cipak L, Grausova L, Miadokova E, Novotny L, Rauko P (2006) Dual activity of triterpenoids: apoptotic versus antidifferentiation effects. Arch Toxicol 80:429–435CrossRefGoogle Scholar
  51. 51.
    Thuya TTT, Quana TD, Anha NTH, Sunga TV (2011) A new hydrochalcone from Miliusa sinensis. Nat Prod Res 25:1361–1365CrossRefGoogle Scholar
  52. 52.
    Maltzman TH, Hurt LM, Elson CE et al (1989) The prevention of nitrosomethylurea- induced mammary tumors by d-limonene and orange oil. Carcinogenesis 10:781–783CrossRefGoogle Scholar
  53. 53.
    Wattenberg LW, Sparnins VL, Barany G (1986) Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res 49:2689–2692Google Scholar
  54. 54.
    Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL (1997) Inhibition of pancreatic cancer growth by the dietary isoprenoids famesol and geraniol. Lipids 3:151–156CrossRefGoogle Scholar
  55. 55.
    Mills JJ, Chari RS, Boyer IJ, Gould MN, Jirtle RL (1995) Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 55:979–983Google Scholar
  56. 56.
    Ripple GH, Gould MN, Stewart JA, Tutsch KD, Arzoomanian RZ, Alberti D, Feierabend C, Pomplun M, Wilding G, Bailey HH (1998) Phase I clinical trial of perillyl alcohol administered daily. Clin Cancer Res 4:1159–1164Google Scholar
  57. 57.
    Zhang S, Won Y-K, Ong C-N, Shen H-M (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5:239–249CrossRefGoogle Scholar
  58. 58.
    Sun SY, Lotan R (2002) Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol 41:41–55CrossRefGoogle Scholar
  59. 59.
    Zheng Y, Cramer PM, Lubet RA, Steele VE, Kelloff GJ, Pereira MA (1999) Effect of retinoids on AOM-induced colon cancer in rats: modulation of cell proliferation, apoptosis and aberrant crypt foci. Carcinogenesis 20:255–260CrossRefGoogle Scholar
  60. 60.
    Lippman SM (2000) Advances in the development of retinoids as chemopreventive agents. J Nutr 130:479S–482SGoogle Scholar
  61. 61.
    Pastorino U (1995) Lung cancer chemoprevention. Cancer Treat Res 72:43–74CrossRefGoogle Scholar
  62. 62.
    Veronesi U, De Palo G, Marubini E et al (1999) Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91:1847–1856CrossRefGoogle Scholar
  63. 63.
    Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16:S28–S37Google Scholar
  64. 64.
    Mujoo K, Haridas V, Hoffmann JJ et al (2001) Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 61:5486–5490Google Scholar
  65. 65.
    Jing C, Mingjie L, Zhao W, Yong J (2002) Apoptosis induced by dioscin in Hela cells. Biol Pharm Bull 25:193–196CrossRefGoogle Scholar
  66. 66.
    Liu WK, Xu SX, Che CT (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67:1297–1306CrossRefGoogle Scholar
  67. 67.
    Omenn GS, Goodman GE, Thornquist MD et al (1996) Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J Natl Cancer Inst 88:1550–1559CrossRefGoogle Scholar
  68. 68.
    The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035CrossRefGoogle Scholar
  69. 69.
    Slattery ML, Benson J, Curtin K, Ma KN, Schaeffer D, Potter JD (2000) Carotenoids and colon cancer. Am J Clin Nutr 71:575–582Google Scholar
  70. 70.
    Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776CrossRefGoogle Scholar
  71. 71.
    Egorin MJ, Rosen DM, Benjamin SE, Callery PS, Sentz DL, Eiseman JL (1997) In vitro metabolism by mouse and human liver preparation of halomon, an antitumour halogenated monoterpene. Cancer Chem Pharm 41:9–14CrossRefGoogle Scholar
  72. 72.
    Liu S, Kulp SK, Sugimoto Y et al (2002) The (−) enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res 22:33–38Google Scholar
  73. 73.
    Matlin SA, Zhou R, Bialy G, Blye RP, Naqvi RH, Lindberg MC (1985) (−)-Gossypol: an active male antifertility agent. Contraception 31:141–149CrossRefGoogle Scholar
  74. 74.
    Manchali S, Murthy KNC, Patil BS (2011) Crucial facts about health benefits of popular cruciferous vegetables. J Fun Foods 4(1):94–106CrossRefGoogle Scholar
  75. 75.
    Lee JS, Kim J, Kim BY, Lee HS, Ahn JS, Chang YS (2000) Inhibition of phospholipase Cg1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla. J Nat Prod 63:753–756CrossRefGoogle Scholar
  76. 76.
    Ulubelen A (2003) Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry 63:395–399CrossRefGoogle Scholar
  77. 77.
    Hada T, Shiraishi A, Furuse S, Inoue Y, Hamashima H, Matsumoto Y, Masuda K, Shimada J (2003) Inhibitory effects of terpenes on the growth of Staphylococcus aureus. Nat Med 57:64–67Google Scholar
  78. 78.
    Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478CrossRefGoogle Scholar
  79. 79.
    Copp BR (2003) Antimycobacterial natural products. Nat Prod Rep 20:535–557CrossRefGoogle Scholar
  80. 80.
    Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Del Rev 56:603–618CrossRefGoogle Scholar
  81. 81.
    Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:39–46CrossRefGoogle Scholar
  82. 82.
    John AJ, Karunakaran VP, George V (2007) Chemical composition an antibacterial activity of Neolitsea foliosa (Nees) Gamble var. caesia (Meisner) Gamble. J Essent Oil Res 19:498–500CrossRefGoogle Scholar
  83. 83.
    Rastogi N et al (1998) Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 20:267–273CrossRefGoogle Scholar
  84. 84.
    Lunde CS, Kubo I (2000) Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1943–1953CrossRefGoogle Scholar
  85. 85.
    Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (e)-phytol and derivatives – a preliminary structure-activity study. Planta Med 64:2–4CrossRefGoogle Scholar
  86. 86.
    Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67:685–694CrossRefGoogle Scholar
  87. 87.
    El Sayed KA, Bartyzel P, Shen XY, Perry TL, Kjawiony JK, Hmann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953CrossRefGoogle Scholar
  88. 88.
    Chen K, Shi Q, Fujioka T et al (1995) Anti-AIDs agents – XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: isolation and structural elucidation. Bioorg Med Chem 3:1345–1348CrossRefGoogle Scholar
  89. 89.
    Badam L (1994) In vitro studies on the effect of glycyrrhizin from Indian Glycyrrhiza glabra Linn. on some RNA and DNA viruses. Ind J Pharmacol 26:194–199Google Scholar
  90. 90.
    Yang SS, Cragg GM, Newman DJ, Bader JP (2001) Natural product-based anti-HIV drug discovery and development facilitated by the NCI development therapeutics program. J Nat Prod 64:265–277CrossRefGoogle Scholar
  91. 91.
    Loya S, Hizi A (1990) The inhibition of human immunodeficiency virus type-1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett 269:131–134CrossRefGoogle Scholar
  92. 92.
    Loya S, Tal R, Kashman Y, Hizi A (1990) Illimaquinone a selective inhibitor of the RNAase H activity of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 34:2009–2012CrossRefGoogle Scholar
  93. 93.
    Khan MT, Ather A, Thompson KD, Gambari R (2005) Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 67:107–119CrossRefGoogle Scholar
  94. 94.
    Niedermeyer TH, Lindequist U, Mentel R, Gordes D, Schmidt E, Thurow K, Lalk M (2005) Antiviral terpenoids constituents of Ganoderma pfeifferi. J Nat Prod 68:1728–1731CrossRefGoogle Scholar
  95. 95.
    Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol: a new anti-viral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27:4287–4290CrossRefGoogle Scholar
  96. 96.
    Groweiss A, Look SA, Fenical W (1988) Solenolides: new anti-inflammatory and antiviral diterpenoids from a marine octocoral of the genus Solenopodium. J Org Chem 53:2401–2406CrossRefGoogle Scholar
  97. 97.
    Drieu K, Jaggy H (2000) Medicinal and aromatic plants-industrial profiles. In: van Beek TA (ed) Ginkgo biloba, vol 12. Harwood Academic, Amsterdam, pp 267–277Google Scholar
  98. 98.
    Simonson W (1998) Promising agents for treating Alzheime’s disease. Am J Health Syst Pharm 55:S11–S16Google Scholar
  99. 99.
    Itil T, Martorano D (1995) Natural substances in psychiatry (Ginkgo biloba in dementia). Psychopharmacol Bull 31:147–158Google Scholar
  100. 100.
    Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF (1997) A placebo-controlled, double-blind randomized trial of an extract of gingko biloba for dementia. North American EGb study group. J Am Med Assoc 278:1327–1332CrossRefGoogle Scholar
  101. 101.
    Warburton DM (1993) Ginkgo biloba extract and cognitive decline. Br J Clin Pharmacol 36:137CrossRefGoogle Scholar
  102. 102.
    Petkov V, Roussinov K, Todorov S, Lazarova M, Yonkov D, Draganova S (1984) Pharmacological investigations on Rhaponticum carthamoides. Planta Med 50:205–209CrossRefGoogle Scholar
  103. 103.
    Mosharrof AH (1987) Effects of extract from Rhaponticum carthamoides (Willd) Iljin (Leuzea) on learning and memory in rats. Acta Physiol Pharmacol Bulg 13:37–42Google Scholar
  104. 104.
    Rocha FF, Lapa AJ, Lima TCM (2002) Evaluation of the anxiolytic-like effects of Cecropia glazioui Sneth in mice. Pharmacol Biochem Behav 71:183–190CrossRefGoogle Scholar
  105. 105.
    Hall IH, Lee KH, Starnes CO, Muraoka O, Sumida Y, Waddell TG (1980) Antihyperlipidemic activity of sesquiterpene lactones and related compounds. J Pharm Sci 69:694–697CrossRefGoogle Scholar
  106. 106.
    Yang ZZ, Li J, Li SX, Feng W, Wang H (2011) Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats. J Ethnopharmacol 136:117–122CrossRefGoogle Scholar
  107. 107.
    Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G (2003) Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J Ethnopharmacol 85:201–206CrossRefGoogle Scholar
  108. 108.
    Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+−channel activity. Metabolism 49:208–214CrossRefGoogle Scholar
  109. 109.
    Abudula R, Jeppesen PB, Rolfsen SED, Xiao J, Hermansen K (2004) Rebaudioside A potentially stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 53:1378–1381CrossRefGoogle Scholar
  110. 110.
    Iqbal Choudhary M, Baig I, Nure-Alam M, Shahzad-ui-Hussan S, Ondognii P, Bunderya M, Oyun Z, Rahman A (2002) New α-Glucosidase inhibitors from the Mongolian medicinal plant Ferula mongolica. Helv Chim Acta 84:2409–2416Google Scholar
  111. 111.
    Toshiyuki N, Kyuji M, Hiroki U, Masayuki Y, Joji Y (2000) Jpn Kokai Tokkyo Kono 8Google Scholar
  112. 112.
    Hisashi M, Toshio M, Hiroki U, Masayuki Y (2001) Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu Kola). Heterocycles 55:1499–1504CrossRefGoogle Scholar
  113. 113.
    Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medical foodstuffs. XXVII. Saponin constitutes of gotu kola(2):structures of new ursane-and oleanane-type triterpene oligoglycosidase, centell. Chem Pharm Bull 49:1368–1371CrossRefGoogle Scholar
  114. 114.
    Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R (2003) Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa, leaves in Type II diabetics. A dose-dependence study. J Ethanopharmcol 87:115–117CrossRefGoogle Scholar
  115. 115.
    Look SA, Fenical W, Jacobs RS, Clardy J (1986) The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Natl Acad Sci USA 83:6238–6240CrossRefGoogle Scholar
  116. 116.
    Peana AT, D’Aquila PS, Chessa ML, Moretti MD, Serra G, Pippia P (2003) (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol 460:37–41CrossRefGoogle Scholar
  117. 117.
    Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MD (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9:721–726CrossRefGoogle Scholar
  118. 118.
    Look SA, Fenical W, Matsumoto GK, Clardy J (1986) The pseudopterosins: a new class of anti-inflammatory and analgesic diterpene pentosides from the marine sea whip Pseudoptergorgia elisabethae (Octocorallia). J Org Chem 51:5140–5145CrossRefGoogle Scholar
  119. 119.
    Roussis V, Fenical W, Strobel SA, Van Duyne GD, Clardy J (1990) New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. J Org Chem 55:4916–4922CrossRefGoogle Scholar
  120. 120.
    Rodrıguez II, Shi YP, Garcia OJ, Rodriguez AD, Mayer AMS, Sanchez JA, Ortega-Barria E, Gonzalez J (2004) New pseudopterosin and seco-pseudopterosin diterpene glycosides from two Colombian isolates of Pseudopterogorgia elisabethae and their diverse biological activities. J Nat Prod 67:1672–1680CrossRefGoogle Scholar
  121. 121.
    Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544CrossRefGoogle Scholar
  122. 122.
    Recio MC, Giner RM, Mánez S, Rios JL (1995) Structural requirements for the anti-inflammatory activity of natural triterpenoids. Planta Med 61:182–185CrossRefGoogle Scholar
  123. 123.
    Otuki MF, Vieira-Lima F, Malheiros A, Yunes RA, Calixto JB (2005) Topical antiinflammatory effects of the ether extract from Protium kleinii and R-amyrin pentacyclic triterpene. Eur J Pharmacol 507:253–259CrossRefGoogle Scholar
  124. 124.
    Mukherjee PK, Saha K, Pal M, Saha BP (1997) Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera (letter). Planta Med 63:367–369CrossRefGoogle Scholar
  125. 125.
    Potts BCM, Faulkner DJ, De Carvalho MS, Jacobs RS (1992) Chemical mechanism of inactivation of bee venom phospholipase A-2 by the marine natural products manoalide luffariellolide and scalaradial. J Am Chem Soc 114:5093–5100CrossRefGoogle Scholar
  126. 126.
    Puliti R, De Rosa S, Mattia CA, Mazzarella L (1990) Structure and stereochemistry of an acetate derivative of cacospongionolide a new antitumorial sesterterpenoid from marine sponge Cacospongia mollior. Acta Crystallog C46:1533–1536Google Scholar
  127. 127.
    Reddy AM, Lee JY, Seo JH, Kim BH, Chung EY, Ryu SY, Kim YS, Lee CK, Min KR, Kim Y (2006) Artemisolide from Artemisia asiatica: nuclear factor-B (NF-κB) inhibitor suppressing prostaglandin E2 and nitric oxide production in macrophages. Arch Pharm Res 29:591–597CrossRefGoogle Scholar
  128. 128.
    Santos FA, Rao VS (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14:240–244CrossRefGoogle Scholar
  129. 129.
    Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ (2000) Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res 49:619–626CrossRefGoogle Scholar
  130. 130.
    Escandell JM, Recio MC, Mánez S, Giner RM, Cerdá-Nicolás M, Rios JL (2007) Cucurbitacin R reduces the inflammation and bone damage associated with adjuvant arthritis in Lewis rats by suppression of tumor necrosis factor-α in T lymphocytes and macrophages. J Pharmacol Exp Ther 320:581–590CrossRefGoogle Scholar
  131. 131.
    Corea G, Fattorusso E, Lanzotti V, Di Meglio P, Maffia P, Grassia G, Ialenti A, Ianaro A (2005) Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent. J Med Chem 48:7055–7062CrossRefGoogle Scholar
  132. 132.
    Ma J-Q, Liu C-M, Qin Z-H, Jiang J-H, Sun Y-Z (2011) Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflammation. Enviorn Toxicol Pharmacol 31:460–468CrossRefGoogle Scholar
  133. 133.
    Shyur L-F, Huang C-C, Lo C-P, Chiu C-Y, Chen Y-P, Wang S-Y, Chang S-T (2008) Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry 69:1348–1358CrossRefGoogle Scholar
  134. 134.
    Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860CrossRefGoogle Scholar
  135. 135.
    Friedman M, Henika PR, Levin CE, Mandrell RE (2004) Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enteric in apple juice. J Agric Food Chem 52:6042–6048CrossRefGoogle Scholar
  136. 136.
    Balint GA (2001) Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol Ther 90:261–265CrossRefGoogle Scholar
  137. 137.
    Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62CrossRefGoogle Scholar
  138. 138.
    Uys AC, Malan SF, van Dyk S, van Zyl RL (2002) Antimalarial compounds from Parinari capensis. Bioorg Med Chem Lett 12:2167–2169CrossRefGoogle Scholar
  139. 139.
    Sairafianpour M, Christensen J, Staerk D, Budnik BA, Kharazmi A, Bagherzadeh K, Jaroszewski JW (2001) Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod 64:1398–1403CrossRefGoogle Scholar
  140. 140.
    Robledo S, Osorio E, Munoz D, Jaramillo LM, Restrepo A, Arango G, Velez I (2005) In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimicrob Agents Chemother 49:1652–1655CrossRefGoogle Scholar
  141. 141.
    Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, Aoki T (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512CrossRefGoogle Scholar
  142. 142.
    Bringmann G, Saeb W, Assi LA, Francois G, Sankara Narayanan AS, Peters K, Peters EM (1997) Betulinic acid: isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester. Planta Med 63:255–257CrossRefGoogle Scholar
  143. 143.
    Wright AD, Wang H, Gurrath M, Konig GM, Kicak G, Neumann G, Loria P, Foley M, Tilley L (2001) Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 44:873–885CrossRefGoogle Scholar
  144. 144.
    Konig GM, Wright AD, Angerhofer CK (1996) Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J Org Chem 61:3259–3267CrossRefGoogle Scholar
  145. 145.
    Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y (2001) Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceania. Bioorg Med Chem Lett 11:1965–1969CrossRefGoogle Scholar
  146. 146.
    Masuda T, Inaba Y, Takeda Y (2001) Antioxidant mechanism of carnosic acid: structural identification of two oxidation products. Antioxidant mechanism of carnosic acid: structural identification of two oxidation products. J Agric Food Chem 49:5560–5565CrossRefGoogle Scholar
  147. 147.
    Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J (1998) Functional food science and defence against reactive oxidative species. Br J Nutr 80:S77–S112CrossRefGoogle Scholar
  148. 148.
    Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242CrossRefGoogle Scholar
  149. 149.
    Ertas A, Ozturk M, Boga M, Topcu G (2009) Antioxidant and anticholinesterase activity evaluation of ent-kaurane diterpenoids from Sideritis arguta. J Nat Prod 72:500–502CrossRefGoogle Scholar
  150. 150.
    Roersch C (2010) Piper umbellatum L.: a comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. J Ethnopharmacol 131:522–537CrossRefGoogle Scholar
  151. 151.
    Chiang LC, Ng LT, Chiang W, Chang MY, Lin CC (2003) Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med 69:600–604CrossRefGoogle Scholar
  152. 152.
    Hughes DA, Wright AJ, Finglas PM et al (1997) The effect of beta-carotene supplementation on the immune function of blood monocytes from healthy male nonsmokers. J Lab Clin Med 129:309–317CrossRefGoogle Scholar
  153. 153.
    Hughes DA (1999) Effects of carotenoids on human immune function. Proc Nutr Soc 58:713–718CrossRefGoogle Scholar
  154. 154.
    Watson RR, Prabhala RH, Plezia PM, Alberts DS (1991) Effect of beta-carotene on lymphocyte subpopulations in elderly humans: evidence for a dose–response relationship. Am J Clin Nutr 53:90–94Google Scholar
  155. 155.
    Ekam VS, Udosen EO, Chigbu AE (2006) Comparative effect of carotenoid complex from Golden Neo-Life Dynamite (GNLD) and carrot extracted carotenoids on immune parameters in albino Wistar rats. Niger J Physiol Sci 21:1–4Google Scholar
  156. 156.
    Cal K, Kupiec K, Sznitowska M (2006) Effects of physicochemical properties of cyclic terpenes on their ex vivo skin absorption and elimination kinetics. J Dermatol Sci 41:137–142CrossRefGoogle Scholar
  157. 157.
    Moghimi HR, Williams AC, Barry BW (1996) A lamellar matrix model for stratum corneum intercellular lipids III. Effects of terpene penetration enhancers on the release of 5-fluorouracil and oestradiol from the matrix. Int J Pharm 145:37–47CrossRefGoogle Scholar
  158. 158.
    Williams AC, Barry BW (1991) Terpenes and the lipid-protein partitioning theory of skin penetration enhancers. Pharm Res 8:17–24CrossRefGoogle Scholar
  159. 159.
    Okabe H, Takayama K, Ogura A, Nagai T (1989) Effect of limonene and related compounds on the percutaneous absorption of indomethacin. Drug Des Deliv 4:313–321Google Scholar
  160. 160.
    Narishetty ST, Panchagnula R (2004) Transdermal delivery of zidovudine: effects of terpenes and their mechanism of action. J Control Release 95:367–379CrossRefGoogle Scholar
  161. 161.
    El-Kattan AF, Asbill CS, Kim N, Michniak BB (2001) The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. Int J Pharm 215:229–240CrossRefGoogle Scholar
  162. 162.
    Kirchner EM (1994) Environment, health concerns force shift in use of organic solvents. Chem Eng News 72:13–20Google Scholar
  163. 163.
    Brown LM, Springer J, Bower M (1992) Chemical substitution for 1,1,1-trichloroethane and methanol in an industrial cleaning operation. J Hazard Mater 29:179–188CrossRefGoogle Scholar
  164. 164.
    Sakharkar PR, Patil AT (1998) Antimicrobial activity of Cassia alata. Ind J Pharm Sci 60:311–312Google Scholar
  165. 165.
    Agnihotri S, Vaidya AD (1996) A novel approach to study antibacterial properties of volatile components of selected Indian medicinal herbs. Ind J Exp Biol 34:712–715Google Scholar
  166. 166.
    Venugopal PV, Venugopal TV (1994) Antidermatophytic activity of neem (Azadirachta indica) leaves in vitro. Ind J Pharmacol 26:141–143Google Scholar
  167. 167.
    Park HM, Lee JH, Yaoyao J, Jun HJ, Lee SJ (2011) Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A2A receptors. Biochem Biophys Res Comm 404:345–348CrossRefGoogle Scholar
  168. 168.
    Mehmood MH, Siddiqi HS, Gilani AH (2011) The antidiarrheal and spasmolytic activities of Phyllanthus emblica are mediated through dual blockade of muscarinic receptors and Ca2+ channels. J Ethnopharmacol 133:856–865CrossRefGoogle Scholar
  169. 169.
    Uchiyama N, Kiuchi F, Ito M, Honda G, Takeda Y, Khodzhimatovd OK, Ashurmetovd OA (2006) Trypanocidal constituents of Dracocephalum komarovi. Tetrahedron 62:4355–4359CrossRefGoogle Scholar
  170. 170.
    Bronstein AC, Spyker DA, Cantilena LR Jr, Green JL, Rumack BH, Giffin SL (2009) Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th annual report. Clin Toxicol (Phila) 48:979–1178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Priyanka P. Brahmkshatriya
    • 1
  • Pathik S. Brahmkshatriya
    • 2
    Email author
  1. 1.Department of PharmacologyL. J. Institute of PharmacyAhmedabadIndia
  2. 2.Institute of Organic Chemistry and Biochemistry, v.v.i. and Gilead Sciences and IOCB Research CenterAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations