Advertisement

Viruses with Double-Stranded, Segmented RNA Genomes

  • Susanne Modrow
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl

Abstract

The members of the families Reoviridae and Birnaviridae possess a double-stranded, segmented RNA genome. Similar molecular properties are found in plant viruses, such as partitiviruses. The genome of birnaviruses, which are not pathogenic for humans, has two genome segments. In contrast, the genomes of reoviruses encompass 9–12 RNA segments. The viruses have a worldwide distribution and cause, to some extent, severe diseases in humans and animals.

Keywords

Genome Segment Endoplasmic Reticulum Membrane Infectious Bursal Disease Virus Viral Core Infectious Pancreatic Necrosis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Anderson EJ, Weber SG (2004) Rotavirus infection in adults. Lancet Infect Dis 4:91–99PubMedCrossRefGoogle Scholar
  2. Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324:1444–1447PubMedCrossRefGoogle Scholar
  3. Ball JM, Mitchell DM, Gibbons TF, Parr RD (2005) Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol 18:27–40PubMedCrossRefGoogle Scholar
  4. Barro M, Patton JT (2005) Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci USA 102:4114–4119PubMedCrossRefGoogle Scholar
  5. Becht H (1980) Infectious bursal disease virus. Curr Top Microbiol Immunol 90:107–121PubMedCrossRefGoogle Scholar
  6. Birghan C, Mundt E, Gorbalenya A (2000) A non-canonical Lon proteinase deficient of the ATPase domain employs the Ser-Lys catalytic dyad to impose broad control over the life cycle of a double-stranded RNA virus. EMBO J 19:114–123PubMedCrossRefGoogle Scholar
  7. Blutt SE, Conner ME (2007) Rotavirus: to the gut and beyond! Curr Opin Gastroenterol 23:39–43PubMedCrossRefGoogle Scholar
  8. Brunet J-P, Jourdan N, Cotte-Lafitte J, Linxe C, Géniteau-Legendre M, Servin A, Quéro A-M (2000) Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration. J Virol 74:10801–10806PubMedCrossRefGoogle Scholar
  9. Conner ME, Matson DO, Estes MK (1994) Rotavirus vaccines and vaccination potential. Curr Top Microbiol Immunol 185:285–337PubMedCrossRefGoogle Scholar
  10. Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J (2004) The zoonotic potential of rotavirus. J Infect 48:289–302PubMedCrossRefGoogle Scholar
  11. Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772PubMedCrossRefGoogle Scholar
  12. Da Costa B, Soignier S, Chevalier C, Henry C, Thory C, Huet J-C, Delmas B (2003) Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J Virol 77:719–725PubMedCrossRefGoogle Scholar
  13. Delmas O, Gardet A, Chwetzoff S, Breton M, Cohen J, Colard O, Sapin C, Trugnan G (2004) Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. Virology 327:157–161PubMedCrossRefGoogle Scholar
  14. Dhama K, Chauhan RS, Mahendran M, Malik SV (2009) Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 33:1–23PubMedCrossRefGoogle Scholar
  15. Dobos P (1995) The molecular biology of infectious pancreatic necrosis virus (IPNV). Annu Rev Fish Dis 5:24–54CrossRefGoogle Scholar
  16. Fischer TK, Ashley D, Kerin T, Reynolds-Hedmann E, Gentsch J, Widdowson MA, Westerman L, Puhr N, Turcios RM, Glass RI (2005) Rotavirus antigenemia in patients with acute gastroenteritis. J Infect Dis 192:913–919PubMedCrossRefGoogle Scholar
  17. Fuentes-Panama EM, Lopez S, Gorziglia M, Arias CF (1995) Mapping of the hemagglutination domain of rotaviruses. J Virol 69:2629–2632Google Scholar
  18. Gardet A, Breton M, Fontanges P, Trugnan G, Chwetzoff S (2006) Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J Virol 80:3947–3956PubMedCrossRefGoogle Scholar
  19. Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI (2005) Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 192(Suppl 1):146–159CrossRefGoogle Scholar
  20. Glass RI, Parashar UD, Bresee JS, Turcios R, Fischer TK, Widdowson MA, Jiang B, Gentsch JR (2006) Rotavirus vaccines: current prospects and future challenges. Lancet 368:323–332PubMedCrossRefGoogle Scholar
  21. Goldwater PN, Rowland K, Thesinger M, Abbott K, Grieve A, Palombo EA, Masendycz PJ, Wilkinson I, Bear J (2001) Rotavirus encephalopathy: pathogenesis reviewed. J Paediatr Child Health 37:206–209PubMedCrossRefGoogle Scholar
  22. Granzow H, Brighan C, Mettenleiter TC, Beyer J, Köllner B, Mundt E (1997) A second form of infectious bursal disease virus associated tubules contains VP4. J Virol 71:8879–8885PubMedGoogle Scholar
  23. Greenberg HB, Estes MK (2009) Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136:1939–1951PubMedCrossRefGoogle Scholar
  24. Hewish MJ, Takada Y, Coulson BS (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells. J Virol 74:228–236PubMedCrossRefGoogle Scholar
  25. Hon CC, Lam TY, Drummond A, Rambaut A, Lee YF, Yip CW, Zeng F, Lam PY, Ng PT, Leung FC (2006) Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus and reassortment of its genome segment B. J Virol 80:8503–8509PubMedCrossRefGoogle Scholar
  26. Jayaram H, Estes MK, Prasad BV (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81PubMedCrossRefGoogle Scholar
  27. Joklik WK, Roner MR (1995) What reassorts when reovirus reassorts? J Biol Chem 270:4181–4184PubMedCrossRefGoogle Scholar
  28. Labbe M, Baudoux P, Charpilienne A, Poncet D, Cohen J (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol 75:3423–3430PubMedCrossRefGoogle Scholar
  29. Lejal N, Da Costa B, Huet JC, Delmas B (2000) Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol 81:983–992PubMedGoogle Scholar
  30. Mundt E, Beyer J, Müller H (1995) Identification of a novel viral protein in infectious bursal disease virus infected cells. J Gen Virol 76:437–443PubMedCrossRefGoogle Scholar
  31. Nguyen TA, Khamrin P, Trinh QD, Phan TG, le Pham D, le Hoang P, Hoang KT, Yagyu F, Okitsu S, Ushijima H (2007) Sequence analysis of Vietnamese P[6] rotavirus strains suggests evidence of interspecies transmission. J Med Virol 79:1959–1965PubMedCrossRefGoogle Scholar
  32. Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM (2006) The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 80:2842–2854PubMedCrossRefGoogle Scholar
  33. Parra GI, Vidales G, Gomez JA, Fernandez FM, Parreño V, Bok K (2008) Phylogenetic analysis of porcine rotavirus in Argentina: increasing diversity of G4 strains and evidence of interspecies transmission. Vet Microbiol 126:243–250PubMedCrossRefGoogle Scholar
  34. Patton JT, Spencer E (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277:217–225PubMedCrossRefGoogle Scholar
  35. Poncet D, Laurent S, Cohen J (1994) Four nucleotides are the minimal requirement for RNA recognition by rotavirus nonstructural protein NSP3. EMBO J 13:4165–4173PubMedGoogle Scholar
  36. Purse BV, Brown HE, Harrup L, Mertens PP, Rogers DJ (2008) Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev Sci Tech 27:427–442PubMedGoogle Scholar
  37. Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78:10213–10220PubMedCrossRefGoogle Scholar
  38. Roy P, Boyce M, Noad R (2009) Prospects for improved bluetongue vaccines. Nat Rev Microbiol 7:120–128PubMedCrossRefGoogle Scholar
  39. Schuck P, Tarapolewara Z, McPhie P, Patton J (2001) Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. J Biol Chem 276:9679–9687PubMedCrossRefGoogle Scholar
  40. Taraporewala ZF, Patton JT (2001) Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75:4519–4527PubMedCrossRefGoogle Scholar
  41. Taraporewala ZF, Patton JT (2004) Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res 101:57–66PubMedCrossRefGoogle Scholar
  42. van den Berg T (2000) Acute infectious bursal disease in poultry: a review. Avian Pathol 29:175–194PubMedCrossRefGoogle Scholar
  43. Vesikari T (2008) Rotavirus vaccines. Scand J Infect Dis 40:691–695PubMedCrossRefGoogle Scholar
  44. Yaeger M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin by cryo-electron microscopy and difference map analysis. EMBO J 13:1011–1018Google Scholar
  45. Zhang M, Zeng CQ-Y, Morris AP, Estes MK (2000) A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol 74:11663–11670PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMünchenGermany

Personalised recommendations