Advertisement

Viruses with Single-Stranded, Positive-Sense RNA Genomes

  • Susanne ModrowEmail author
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl

Abstract

Eight virus families whose members infect vertebrates are currently known to possess single-stranded, positive-sense RNA genomes: the families Picornaviridae, Caliciviridae and Hepeviridae have non-enveloped capsids, whereas the families Flaviviridae, Togaviridae, Arteriviridae and Coronaviridae are characterized by enveloped capsids. They all have in common the property of using their own genome as messenger RNA (mRNA), from which they synthesize one or several polyproteins that are subsequently cleaved into individual proteins by viral or cellular proteases. These viruses possess the genetic information for the synthesis of an RNA-dependent RNA polymerase. This enzyme transcribes the positive RNA strand as well as the complementary negative RNA strands, which arise as intermediate products of genome replication. In the course of this process, the new genomic RNA molecules are generated from the second transcription step. The classification into the different taxonomic families depends on the number, size, position and orientation of viral genes in the RNA molecule, the number of different polyproteins that are synthesized during viral infection and the existence of an envelope as a virion component.

References

  1. Hellen C, Wimmer E (1995) Enterovirus structure and assembly. In: Rotbart HA (ed) Human enterovirus infection. American Society for Microbiology, Washington, DC, p 163Google Scholar
  2. Olsen NH, Kolatkar PR, Oliveira MA, Cheng RH, Greve JM, McClelland A, Baker TS, Rossmann MG (1993a) Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci U S A 90:507–511Google Scholar

Further Reading

  1. Abzug MJ (2008) The enteroviruses: an emerging infectious disease? The real, the speculative and the really speculative. Adv Exp Med Biol 609:1–15PubMedGoogle Scholar
  2. Aggarwal N, Barnett PV (2002) Antigenic sites of foot-and-mouth disease virus (FMDV): an analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species. J Gen Virol 83:775–782PubMedGoogle Scholar
  3. Almond JW (1991) Poliovirus neurovirulence. Semin Neurosci 3:101–108Google Scholar
  4. Angelini R, Finarelli AC, Angelini P, Po C, Petropulacos K, Silvi G, Macini P, Fortuna C, Venturi G, Magurano F, Fiorentini C, Marchi A, Benedetti E, Bucci P, Boros S, Romi R, Majori G, Ciufolini MG, Nicoletti L, Rezza G, Cassone A (2007) Chikungunya in north-eastern Italy: a summing up of the outbreak. Euro Surveill 12:E071122.2PubMedGoogle Scholar
  5. Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, Kallis S, Engel U, Bartenschlager R (2008) Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 28:e1000035Google Scholar
  6. Appleton H, Higgins PG (1975) Viruses and gastroenteritis in infants. Lancet 1(7919):1297PubMedGoogle Scholar
  7. Balasriya UBR, Snijder EJ (2008) Arteriviruses. In: Mettenleiter TC, Sobrino F (eds) Animal viruses: molecular biology. Caister, Norwich, pp 97–148Google Scholar
  8. Banatvala JE, Brown DW (2004) Rubella. Lancet 363:1127–1137PubMedGoogle Scholar
  9. Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81:1631–1648PubMedGoogle Scholar
  10. Bartenschlager R, Miller S (2008) Molecular aspects of Dengue virus replication. Future Microbiol 3:155–165PubMedGoogle Scholar
  11. Bartenschlager R, Ahlborn-Laake L, Yasargil K, Mous J, Jacobson H (1995) Substrate determinants for cleavage in cis and trans by hepatitis C virus NS3 proteinase. J Virol 69:198–205PubMedGoogle Scholar
  12. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096PubMedGoogle Scholar
  13. Baumgarte S, de Souza Luna LK, Grywna K, Panning M, Drexler JF, Karsten C, Huppertz HI, Drosten C (2008) Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. J Clin Microbiol 46:242–248PubMedGoogle Scholar
  14. Becher P, Orlich M, Thiel H-J (2001) RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. J Virol 75:6256–6264PubMedGoogle Scholar
  15. Berman K, Kwo PY (2009) Boceprevir, an NS3 protease inhibitor of HCV. Clin Liver Dis 13:429–439PubMedGoogle Scholar
  16. Bhella D, Gatherer D, Chaudhry Y, Pink R, Goodfellow IG (2008) Structural insights into calicivirus attachment and uncoating. J Virol 82:8051–8058PubMedGoogle Scholar
  17. Bible JM, Pantelidis P, Chan PK, Tong CY (2007) Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol 17:371–379PubMedGoogle Scholar
  18. Bonaparte RS, Hair PS, Banthia D, Marshall DM, Cunnion KM, Krishna NK (2008) Human astrovirus coat protein inhibits serum complement activation via C1, the first component of the classical pathway. J Virol 82:817–827PubMedGoogle Scholar
  19. Bouwknegt M, Lodder-Verschoor F, van der Poel WH, Rutjes SA, de Roda Husman AM (2007) Hepatitis E virus RNA in commercial porcine livers in the Netherlands. J Food Prot 70:2889–2895PubMedGoogle Scholar
  20. Bradley DW, Balayan MS (1988) Viruses of enterically transmitted non-A, non-B hepatitis. Lancet 1:819PubMedGoogle Scholar
  21. Brian DA, Baric RS (2005) Coronavirus genome structure and replication. Curr Top Microbiol Immunol 287:1–30PubMedGoogle Scholar
  22. Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, Welch SK (2007) CD 163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol 81:7371–7379PubMedGoogle Scholar
  23. Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z (2007) Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81:5949–5957PubMedGoogle Scholar
  24. Chandra V, Kar-Roy A, Kumari S, Mayor S, Jameel S (2008a) The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. J Virol 82:7100–7110PubMedGoogle Scholar
  25. Chandra V, Taneja S, Kalia M, Jameel S (2008b) Molecular biology and pathogenesis of hepatitis E virus. J Biosci 33:451–464PubMedGoogle Scholar
  26. Chandriani S, Skewes-Cox P, Zhong W, Ganem DE, Divers TJ, Van Blaricum AJ, Tennant BC, Kistler AL (2013) Identification of a previously undescribed divergent virus from the Flaviviridae family in an outbreak of equine serum hepatitis. Proc Natl Acad Sci USA 110(15):E1407–E1415PubMedGoogle Scholar
  27. Chapman NM, Kim KS (2008) Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol 323:275–292PubMedGoogle Scholar
  28. Chen J, Strauss JH, Strauss EG, Frey TK (1996) Characterization of the rubella virus nonstructural protease domain and its cleavage site. J Virol 70:4707–4713PubMedGoogle Scholar
  29. Chen R, Neill JD, Estes MK, Prasad BV (2006) X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 103:8048–8053PubMedGoogle Scholar
  30. Chen Z, Rijnbrand R, Jangra RK, Devaraj SG, Qu L, Ma Y, Lemon SM, Li K (2007) Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366:277–292PubMedGoogle Scholar
  31. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676PubMedGoogle Scholar
  32. Cheng VC, Lau SK, Woo PC, Yuen KY (2007) Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20:660–694PubMedGoogle Scholar
  33. Chevillon C, Briant L, Renaud F, Devaux C (2008) The chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 16:80–88PubMedGoogle Scholar
  34. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362PubMedGoogle Scholar
  35. Chu JJ, Ng ML (2004) Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem 279:54533–54541PubMedGoogle Scholar
  36. Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP, Diamond MS (2006) West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 103:19111–19116PubMedGoogle Scholar
  37. Clarke IN, Lambden PR (2001) The molecular biology of caliciviruses. J Gen Virol 78:291–301Google Scholar
  38. Clementz MA, Kanjanahaluethai A, O’Brien TE, Baker SC (2008) Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 375:118–129PubMedGoogle Scholar
  39. Coetzer JAW, Thomson GR, Tustin RC (eds) (2004) Infectious diseases of livestock with special reference to southern Africa. Oxford University Press, OxfordGoogle Scholar
  40. Cornillez-Ty CT, Liao L, Yates JR 3rd, Kuhn P, Buchmeier MJ (2009) Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 83:10314–10318PubMedGoogle Scholar
  41. Cristina J, Costa-Mattioli M (2007) Genetic variability and molecular evolution of hepatitis A virus. Virus Res 127:151–157PubMedGoogle Scholar
  42. Daughenbaugh KF, Fraser CS, Hershey JW, Hardy ME (2003) The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J 22:2852–2859PubMedGoogle Scholar
  43. Delputte PL, Van Breedam W, Delrue I, Oetke C, Crocker PR, Nauwynck HJ (2007) Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin. J Virol 81:9546–9550PubMedGoogle Scholar
  44. Deming DJ, Graham RL, Denison MR, Baric RS (2007) Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J Virol 81:10280–10291PubMedGoogle Scholar
  45. Diemer C, Schneider M, Seebach J, Quaas J, Frösner G, Schätzl HM, Gilch S (2008) Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. J Mol Biol 376:23–34PubMedGoogle Scholar
  46. Dreschers S, Dumitru CA, Adams C, Gulbins E (2007) The cold case: are rhinoviruses perfectly adapted pathogens? Cell Mol Life Sci 64:181–191PubMedGoogle Scholar
  47. Drosten C, Günher S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976PubMedGoogle Scholar
  48. Enders JF, Weller TH, Robbins FC (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 190:85–87Google Scholar
  49. Enjuanes L, Almazán F, Sola I, Zuñiga S (2006) Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 60:211–230PubMedGoogle Scholar
  50. Esteban JI, Sauleda S, Quer J (2008) The changing epidemiology of hepatitis C virus infection in Europe. J Hepatol 48:148–162PubMedGoogle Scholar
  51. Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19:467–474PubMedGoogle Scholar
  52. Fensterl V, Grotheer D, Berk I, Schlemminger S, Vallbracht A, Dotzauer A (2005) Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J Virol 79:10968–10977PubMedGoogle Scholar
  53. Fontana J, Tzeng WP, Calderita G, Fraile-Ramos A, Frey TK, Risco C (2007) Novel replication complex architecture in rubella replicon-transfected cells. Cell Microbiol 9:875–890PubMedGoogle Scholar
  54. Frey TK (1994) Molecular biology of rubella virus. Adv Virus Res 44:69–160PubMedGoogle Scholar
  55. Geigenmüller U, Chew T, Ginzton N, Matsui SM (2002) Processing of nonstructural protein 1a of human astrovirus. J Virol 76:2003–2008PubMedGoogle Scholar
  56. Geissler K, Schneider K, Platzer G, Truyen B, Kaaden O-R, Truyen U (1997) Genetic and antigenic heterogeneity among feline calicivirus isolates from distinct disease cluster. Virus Res 48:193–206PubMedGoogle Scholar
  57. Geissler K, Schneider K, Fleuchaus A, Parrish CR, Sutter G, Truyen U (1999) Feline calicivirus capsid protein expression and capsid assembly in cultured feline cells. J Virol 73:834–838PubMedGoogle Scholar
  58. Gibbens JC, Sharpe CE, Wilesmith JW, Mansley LM, Michalopoulou E, Ryan JBM, Hudson M (2001) Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Vet Rec 149:729–743PubMedGoogle Scholar
  59. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–1098PubMedGoogle Scholar
  60. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC, Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203:35–40PubMedGoogle Scholar
  61. Gonzalez ME, Carrasco L (2003) Viroporins. FEBS Lett 552:28–34PubMedGoogle Scholar
  62. Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371:500–509PubMedGoogle Scholar
  63. Gould EA, Coutard B, Malet H, Morin B, Jamal S, Weaver S, Gorbalenya A, Moureau G, Baronti C, Delogu I, Forrester N, Khasnatinov M, Gritsun T, de Lamballerie X, Canard B (2010) Understanding the alphaviruses: recent research on important emerging pathogens and progress towards their control. Antiviral Res 87:111–124PubMedGoogle Scholar
  64. Greene IP, Paessler S, Austgen L, Anishchenko M, Brault AC, Bowen RA, Weaver SC (2005) Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic venezuelan equine encephalitis virus. J Virol 79:9128–9133PubMedGoogle Scholar
  65. Gromeier M, Solecki D, Patel DD, Wimmer E (2000) Expression of the human poliovirus receptor/CD 155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273:248–257PubMedGoogle Scholar
  66. Grubman MJ, Moraes MP, Diaz-San Segundo F, Pena L, de los Santos T (2008) Evading the host immune response: how foot-and-mouth disease virus has become an effective pathogen. FEMS Immunol Med Microbiol 53:8–17PubMedGoogle Scholar
  67. Guix S, Caballero S, Bosch A, Pintó RM (2004) C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic reticulum and viral RNA. J Virol 78:13627–13636PubMedGoogle Scholar
  68. Guix S, Caballero S, Bosch A, Pintó RM (2005) Human astrovirus C-terminal nsP1a protein is involved in RNA replication. Virology 333:124–131PubMedGoogle Scholar
  69. Guo Y, Korteweg C, McNutt MA, Gu J (2008) Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res 133:4–12PubMedGoogle Scholar
  70. Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 106:12992–12997PubMedGoogle Scholar
  71. Guzman MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2:33–42PubMedGoogle Scholar
  72. Haagsma EB, van den Berg AP, Porte RJ, Benne CA, Vennema H, Reimerink JH, Koopmans MP (2008) Chronic hepatitis E virus infection in liver transplant recipients. Liver Transpl 14:547–553PubMedGoogle Scholar
  73. Hansman GS, Oka T, Katayama K, Takeda N (2007) Human sapoviruses: genetic diversity, recombination, and classification. Rev Med Virol 17:133–141PubMedGoogle Scholar
  74. Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698PubMedGoogle Scholar
  75. Henchal EA, Putnak JR (1990) The Dengue viruses. Clin Microbiol Rev 376:376–396Google Scholar
  76. Hershkovitz O, Zilka A, Bar-Ilan A, Abutbul S, Davidson A, Mazzon M, Kümmerer BM, Monsoengo A, Jacobs M, Porgador A (2008) Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol 82:7666–7676PubMedGoogle Scholar
  77. Hofmann H, Pöhlmann S (2004) Cellular entry of the SARS corona virus. Trends Microbiol 12:466–472PubMedGoogle Scholar
  78. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102:7988–7993PubMedGoogle Scholar
  79. Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, Geier M, Wegele A, Marzi A, Bates P, Pöhlmann S (2006) Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 80:8639–8652PubMedGoogle Scholar
  80. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1363PubMedGoogle Scholar
  81. Holmes KV, Lai MM (1995) Coronaviridae: the viruses and their replication. In: Fields BN, Knipe DN, Howley PM (eds) Virology, 3rd edn. Raven, New York, pp 1075–1094Google Scholar
  82. Holmes EC, Rambaut A (2004) Viral evolution and the emergence of SARS coronavirus. Philos Trans R Soc Lond B 359:1059–1065Google Scholar
  83. Hovi T (2001) Inactivated poliovirus vaccine and the final stages of poliovirus eradication. Vaccine 19:2268–2272PubMedGoogle Scholar
  84. Iqbal M, Poole E, Goodbourn S, McCauley JW (2004) Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J Virol 78:136–145PubMedGoogle Scholar
  85. Jang SK, Pestova TV, Hellen CUT, Witherell GW, Wimmer E (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44:292–309PubMedGoogle Scholar
  86. Jiang X, Huang P, Zhong W, Tan M, Farkas T, Morrow AL, Newburg DS, Ruiz-Palacios GM, Pickering LK (2004) Human milk contains elements that block bin ding of noroviruses to human histo-blood group antigens in saliva. J Infect Dis 190:1850–1859PubMedGoogle Scholar
  87. Johansen LK, Morrow CD (2000) The RNA encompassing the internal ribosomal entry site in the poliovirus 5’ nontranslated region enhances the encapsidation of genomic RNA. Virology 273:391–399PubMedGoogle Scholar
  88. Joki-Korpela P, Hyypiä T (2001) Parechoviruses, a novel group of human picornaviruses. Ann Med 33:466–471PubMedGoogle Scholar
  89. Jonassen CM, Jonassen TTØ, Sveen TM, Grinde B (2003) Complete genomic sequences of astroviruses from sheep and turkey: comparison with related viruses. Virus Res 91:195–201PubMedGoogle Scholar
  90. Jung S, Eichenmüller M, Donhauser N, Neipel F, Engel AM, Hess G, Fleckenstein B, Reil H (2007) HIV entry inhibition by the envelope 2 glycoprotein of GB virus C. AIDS 21:645–647PubMedGoogle Scholar
  91. Kaci S, Nöckler K, Johne R (2008) Detection of hepatitis E virus in archived German wild boar serum samples. Vet Microbiol 128:380–385PubMedGoogle Scholar
  92. Kamar N, Selves J, Mansuy JM, Ouezzani L, Péron JM, Guitard J, Cointault O, Esposito L, Abravanel F, Danjoux M, Durand D, Vinel JP, Izopet J, Rostaing L (2008) Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N Engl J Med 358:811–817PubMedGoogle Scholar
  93. Kannan H, Fan S, Patel D, Bossis I, Zhang YJ (2009) The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. J Virol 83:6375–6382PubMedGoogle Scholar
  94. Kennedy M, Boedeker N, Gibbs P, Kania S (2001) Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81:227–234PubMedGoogle Scholar
  95. Kiiver K, Tagen I, Zusinaite E, Tamberg N, Fazakerley JK, Merits A (2008) Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication. J Gen Virol 89:1457–1466PubMedGoogle Scholar
  96. Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L (2008) A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis 197:266–269PubMedGoogle Scholar
  97. Koch J, Schneider T, Stark K, Schreier E (2006) Norovirus infections in Germany. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 49:296–309Google Scholar
  98. Koopmans M (2008) Progress in understanding norovirus epidemiology. Curr Opin Infect Dis 21:544–552PubMedGoogle Scholar
  99. Krishna NK (2005) Identification of structural domains involved in astrovirus capsid biology. Viral Immunol 18:17–26PubMedGoogle Scholar
  100. Krishna NK, Cunnion KM (2008) Human astrovirus coat protein: a novel C1 inhibitor. Adv Exp Med Biol 632:237–251PubMedGoogle Scholar
  101. Kroschewski H, Allison SL, Heinz FX, Mandl CW (2003) Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308:92–100PubMedGoogle Scholar
  102. L’Homme Y, Sansregret R, Plante-Fortier E, Lamontagne AM, Ouardani M, Lacroix G, Simard C (2009) Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes 39:66–75PubMedGoogle Scholar
  103. Lai MM, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–100PubMedGoogle Scholar
  104. Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang WK (2008) Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82:6631–6643PubMedGoogle Scholar
  105. Landsteiner K, Popper E (1909) Übertragung der Poliomyelitis acuta auf Affen. Z Immunitatsforsch Orig 2:377–390Google Scholar
  106. Lau YL, Peiris JSM (2005) Pathogenesis of the severe acute respiratory syndrome. Curr Opin Immunol 17:404–410PubMedGoogle Scholar
  107. Law LM, Everitt JC, Beatch MD, Holmes CF, Hobman TC (2003) Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 77:1764–1771PubMedGoogle Scholar
  108. Lee C, Yoo D (2006) The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. Virology 355:30–43PubMedGoogle Scholar
  109. Lei HY, Yeh TM, Lin HS, Lin YS, Chen SH, Lin CC (2001) Immunopathogenesis of dengue virus infection. J Biomed Sci 8:377–388PubMedGoogle Scholar
  110. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA (2008) Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82:4731–4741PubMedGoogle Scholar
  111. Li S, Tang X, Seetharaman J, Yang C, Gu Y, Zhang J, Du H, Shih JW, Hew CL, Sivaraman J, Xia N (2009) Dimerization of hepatitis E virus capsid protein E2s domain is essential for virus-host interaction. PLoS Pathog 5:e1000537PubMedGoogle Scholar
  112. Lim JK, Glass WG, McDermott DH, Murphy PM (2006) CCR5: no longer a “good for nothing” gene–chemokine control of West Nile virus infection. Trends Immunol 27:308–312PubMedGoogle Scholar
  113. Lin X, Yang J, Ghazi AM, Frey TK (2000) Characterization of the zinc binding activity of the rubella virus nonstructural protease. J Virol 74:5949–5956Google Scholar
  114. Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL (2006) Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80:5908–5918PubMedGoogle Scholar
  115. Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80:2396–2404PubMedGoogle Scholar
  116. Lukashev AN (2005) Role of recombination in evolution of enteroviruses. Rev Med Virol 15:157–167PubMedGoogle Scholar
  117. Luo ZL, Weiss SR (1998) Mutational analysis of fusion peptide-like regions in the mouse hepatitis virus strain A59 spike protein. Adv Exp Med Biol 440:17–23PubMedGoogle Scholar
  118. MacLachlan NJ, Balasuriya UB (2006) Equine viral arteritis. Adv Exp Med Biol 581:429–433PubMedGoogle Scholar
  119. Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T (2009) Tick-borne encephalitis virus – a review of an emerging zoonosis. J Gen Virol 90:1781–1794PubMedGoogle Scholar
  120. Mansuy JM, Legrand-Abravanel F, Calot JP, Peron JM, Alric L, Agudo S, Rech H, Destruel F, Izopet J (2008) High prevalence of anti-hepatitis E virus antibodies in blood donors from south west France. J Med Virol 80:289–293PubMedGoogle Scholar
  121. Martella V, Lorusso E, Decaro N, Elia G, Radogna A, D’Abramo M, Desario C, Cavalli A, Corrente M, Camero M, Germinario CA, Bányai K, Di Martino B, Marsilio F, Carmichael LE, Buonavoglia C (2008) Detection and molecular characterization of a canine norovirus. Emerg Infect Dis 14:1306–1308PubMedGoogle Scholar
  122. Martin A, Lemon SM (2006) Hepatitis A virus: from discovery to vaccines. Hepatology 43:164–172Google Scholar
  123. McCormick CJ, Salim O, Lambden PR, Clarke IN (2008) Translational termination reinitiation between open reading frame 1 (ORF1) and ORF2 enables capsid expression in a bovine norovirus without the need for production of viral subgenomic RNA. J Virol 82:8917–8921PubMedGoogle Scholar
  124. Melton JV, Ewart GD, Weir RC, Board PG, Lee E, Gage PW (2002) Alphavirus 6K proteins form ion channels. J Biol Chem 277:46923–46931PubMedGoogle Scholar
  125. Meng XJ (2010) Hepatitis E virus: animal reservoirs and zoonotic risk. Vet Microbiol 140:256–265PubMedGoogle Scholar
  126. Meng XJ, Halbur PG, Haynes JS, Tsavera TS, Bruna JD, Royer RL, Purcell RH, Emerson SU (1998a) Experimental infection of pigs with the newly identified swine hepatitis virus (swine HEV), but not with human strains of HEV. Arch Virol 143:1405–1415PubMedGoogle Scholar
  127. Meng XJ, Halbur PG, Shapiro MS, Govindarajan S, Bruna JD, Mushahwar IK, Purcell RH, Emerson SU (1998b) Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol 72:9714–9721PubMedGoogle Scholar
  128. Meyers G, Thiel HJ (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–118PubMedGoogle Scholar
  129. Morace G, Kusov Y, Dzagurov G, Beneduce F, Gauss-Muller V (2008) The unique role of domain 2A of the hepatitis-A virus precursor polypeptide P1-2A in viral morphogenesis. BMB Rep 41:678–683PubMedGoogle Scholar
  130. Moser LA, Schultz-Cherry S (2005) Pathogenesis of astrovirus infection. Viral Immunol 18:4–10PubMedGoogle Scholar
  131. Moser LA, Schultz-Cherry S (2008) Suppression of astrovirus replication by an ERK1/2 inhibitor. J Virol 82:7475–7482PubMedGoogle Scholar
  132. Moser LA, Carter M, Schultz-Cherry S (2007) Astrovirus increases epithelial barrier permeability independently of viral replication. J Virol 81:11937–11945PubMedGoogle Scholar
  133. Mueller S, Wimmer E, Cello J (2005) Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res 111:175–193PubMedGoogle Scholar
  134. Muerhoff AS, Leary TP, Simons JN, Pilot-Matias TJ, Dawson GJ, Erker JC, Chalmers ML, Schlauder GG, Desai SM, Mushahwar IK (1995) Genomic organization of GB viruses A and B: two new members of the flaviviridae associated with GB agent hepatitis. J Virol 69:5621–5630PubMedGoogle Scholar
  135. Myint S, Manley R, Cubitt D (1994) Viruses in bathing waters. Lancet 343:1640PubMedGoogle Scholar
  136. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CT, Makino S (2008a) Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82:4471–4479PubMedGoogle Scholar
  137. Narayanan K, Huang C, Makino S (2008b) SARS coronavirus accessory proteins. Virus Res 133:113–121PubMedGoogle Scholar
  138. Niklasson B, Kinnunen L, Hörnfeld B, Hörling J, Benemer C, Hedlund KO, Matskova L, Hyypiä T, Winberg G (1999) A new picornavirus isolated from bank voles (Clethrionomys glareolus). Virology 255:86–93PubMedGoogle Scholar
  139. Niklasson B, Samsioe A, Papadogiannakis N, Kawecki A, Hörnfeldt B, Saade GR, Klitz W (2007) Association of zoonotic Ljungan virus with intrauterine fetal deaths. Birth Defects Res A Clin Mol Teratol 79:488–493PubMedGoogle Scholar
  140. Oka T, Yamamoto M, Katayama K, Hansman GS, Ogawa S, Miyamura T, Takeda N (2006) Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. J Gen Virol 87:3329–3338PubMedGoogle Scholar
  141. Olsen CW, Corapi WV, Jacobson RH, Simkins RA, Saif LJ, Scott FW (1993b) Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. J Gen Virol 74:745–749PubMedGoogle Scholar
  142. Ossiboff RJ, Parker JS (2007) Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. J Virol 81:13608–13621PubMedGoogle Scholar
  143. Pardigon N (2009) The biology of chikungunya: a brief review of what we still do not know. Pathol Biol (Paris) 57:127–132Google Scholar
  144. Pasternak AO, Spaan WJ, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87:1403–1421PubMedGoogle Scholar
  145. Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E (2000) Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of Vpg. J Virol 74:10359–10370PubMedGoogle Scholar
  146. Paulmann D, Magulski T, Schwarz R, Heitmann L, Flehmig B, Vallbracht A, Dotzauer A (2008) Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J Gen Virol 89:1593–1604PubMedGoogle Scholar
  147. Perlman S, Netland J (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7:439–450PubMedGoogle Scholar
  148. Pfleiderer C, Blümel J, Schmidt M, Roth WK, Houfar MK, Eckert J, Chudy M, Menichetti E, Lechner S, Nübling CM (2008) West Nile virus and blood product safety in Germany. J Med Virol 80:557–563PubMedGoogle Scholar
  149. Pierson TC, Diamond MS (2008) Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 10:e12PubMedGoogle Scholar
  150. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedGoogle Scholar
  151. Posthuma CC, Nedialkova DD, Zevenhoven-Dobbe JC, Blokhuis JH, Gorbalenya AE, Snijder EJ (2006) Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. J Virol 80:1653–1661PubMedGoogle Scholar
  152. Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377PubMedGoogle Scholar
  153. Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver C (2001) Evolutionary relationships and systematics of the alphaviruses. J Virol 75:10118–10131PubMedGoogle Scholar
  154. Purcell RH, Emerson SU (2008) Hepatitis E: an emerging awareness of an old disease. J Hepatol 48:494–503PubMedGoogle Scholar
  155. Racaniello VR (2006) One hundred years of poliovirus pathogenesis. Virology 344:9–16PubMedGoogle Scholar
  156. Radford AD, Gaskell RM, Hart CA (2004) Human norovirus infection and the lessons from animal caliciviruses. Curr Opin Infect Dis 17:471–478PubMedGoogle Scholar
  157. Reshetnyak VI, Karlovich TI, Ilchenko LU (2008) Hepatitis G virus. World J Gastroenterol 14:4725–4734PubMedGoogle Scholar
  158. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–299PubMedGoogle Scholar
  159. Rieder E, Paul AV, Kim DW, van Boom JH, Wimmer E (2008) Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to Vpg uridylylation. J Virol 74:10371–10380Google Scholar
  160. Robel I, Gebhardt J, Mesters JR, Gorbalenya A, Coutard B, Canard B, Hilgenfeld R, Rohayem J (2008) Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease. J Virol 82:8085–8093PubMedGoogle Scholar
  161. Rockx BH, Vennema H, Hoebe CJ, Duizer E, Koopmans MP (2005) Association of histo-blood group antigens and susceptibility to norovirus infections. J Infect Dis 191:749–754PubMedGoogle Scholar
  162. Rossmann MG (1989) The canyon hypothesis. Hiding the cell receptor attachment site an a viral surface from immune surveillance. J Biol Chem 264:14587–14590PubMedGoogle Scholar
  163. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson J, Kamer J, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153PubMedGoogle Scholar
  164. Rossmann MG, Bella J, Kolatkar PR, He Y, Wimmer E, Kuhn RJ, Baker TS (2000) Cell recognition and entry by rhino- and enteroviruses. Virology 269:239–247PubMedGoogle Scholar
  165. Rümenapf T, Thiel H-J (2008) Molecular biology of pestiviruses. In: Mettenleiter TC, Sobrino F (eds) Animal viruses: molecular biology. Caister, Norwich, pp 39–96Google Scholar
  166. Savolainen C, Blomqvist S, Hovi T (2003) Human rhinoviruses. Paediatr Respir Rev 4:91–98PubMedGoogle Scholar
  167. Scipioni A, Mauroy A, Vinjé J, Thiry E (2008) Animal noroviruses. Vet J 178:32–45PubMedGoogle Scholar
  168. Shimizu H, Agoh M, Agoh Y, Yoshida H, Yoneyama T, Hagiwara A, Miyamura T (2000) Mutation in the 2C region of poliovirus responsible for altered sensitivity to benzimidazole derivatives. J Virol 74:4146–4154PubMedGoogle Scholar
  169. Shirako Y, Strauss JH (1994) Regulation of sindbis virus RNA replication: uncleaved p123 and nsP4 function in minus strand RNA synthesis whereas cleaved products from p123 are required for efficient plus-strand synthesis. J Virol 68:1874–1885PubMedGoogle Scholar
  170. Shrestha MP, Scott RM, Joshi DM, Mammen MP Jr, Thapa GB, Thapa N, Myint KS, Fourneau M, Kuschner RA, Shrestha SK, David MP, Seriwatana J, Vaughn DW, Safary A, Endy TP, Innis BL (2007) Safety and efficacy of a recombinant hepatitis E vaccine. N Engl J Med 356:895–903PubMedGoogle Scholar
  171. Singh NK, Atreya CD, Nakhasi HL (1994) Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A 91:12770–12774PubMedGoogle Scholar
  172. Snijder EJ, Meulenberg JJM (1998) The molecular biology of arteriviruses. J Gen Virol 79:961–979PubMedGoogle Scholar
  173. Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378PubMedGoogle Scholar
  174. Sosnovtsev S, Green KY (2000) RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. Virology 210:383–390Google Scholar
  175. Sperry SM, Kazi L, Graham RL, Baric RS, Weiss SR, Denison MR (2005) Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. J Virol 79:3391–3400PubMedGoogle Scholar
  176. Spuul P, Salonen A, Merits A, Jokitalo E, Kääriäinen L, Ahola T (2007) Role of the amphipathic peptide of Semliki Forest virus replicase protein nsP1 in membrane association and virus replication. J Virol 81:872–883PubMedGoogle Scholar
  177. Stavrinides J, Guttman DS (2004) Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol 78:76–82PubMedGoogle Scholar
  178. Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P (2011) The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J Gen Virol 92:233–246PubMedGoogle Scholar
  179. Steil BP, Barton DJ (2009) Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 139:240–252PubMedGoogle Scholar
  180. Surjit M, Lal SK (2008) The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect Genet Evol 8:397–405PubMedGoogle Scholar
  181. Surjit M, Jameel S, Lal SK (2007) Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. J Virol 81:3339–3345PubMedGoogle Scholar
  182. Tami C, Silberstein E, Manangeeswaran M, Freeman GJ, Umetsu SE, DeKruyff RH, Umetsu DT, Kaplan GG (2007) Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J Virol 81:3437–3446PubMedGoogle Scholar
  183. Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293PubMedGoogle Scholar
  184. Tan M, Jiang X (2007) Norovirus-host interaction: implications for disease control and prevention. Expert Rev Mol Med 9:1–22PubMedGoogle Scholar
  185. Tautz N, Elbers K, Stoll D, Meyers G, Thiel H-J (1997) Serin protease of pestivirus: determination of cleavage sites. J Virol 71:5415–5422PubMedGoogle Scholar
  186. Thiel V, Weber F (2008) Interferon and cytokine responses to SARScoronavirus infection. Cytokine Growth Factor Rev 19:121–132PubMedGoogle Scholar
  187. Thiel V, Herold J, Schelle B, Siddell SG (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681PubMedGoogle Scholar
  188. Timm J, Roggendorf M (2007) Sequence diversity of hepatitis C virus: implications for immune control and therapy. World J Gastroenterol 13:4808–4817PubMedGoogle Scholar
  189. Tresnan DB, Holmes KV (1998) Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440:69–75PubMedGoogle Scholar
  190. Tygai S, Jameel S, Lal SK (2001) Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein. J Virol 75:2493–2498Google Scholar
  191. van der Hoek L (2007) Human coronaviruses: what do they cause? Antivir Ther 12:651–658PubMedGoogle Scholar
  192. van der Werf N, Kroese FG, Rozing J, Hillebrands JL (2007) Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 23:169–183PubMedGoogle Scholar
  193. Van Marle G, Dobbe JC, Gultyaev AP, Luyties W, Spaan WJ, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96:12056–12061PubMedGoogle Scholar
  194. Vennema H, Poland A, Foley J, Pedersen NC (1998) Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. J Virol 243:150–157Google Scholar
  195. von Magnus H, Gear JHS, Paul JR (1995) A recent definition of poliomyelitis viruses. Virology 1:185–189Google Scholar
  196. Wallner G, Mandl CW, Kunz C, Heinz FX (1995) The flavivirus 3’-noncoding region: extensive size heterogenicity independent of evolutionary relationships among strains of tickborne encephalitis virus. Virology 213:169–178PubMedGoogle Scholar
  197. Walter JE, Mitchell DK (2003) Astrovirus infection in children. Curr Opin Infect Dis 16:247–253PubMedGoogle Scholar
  198. Wang LF, Eaton BT (2007) Bats, civets and the emergence of SARS. Curr Top Microbiol Immunol 315:325–344PubMedGoogle Scholar
  199. Wang Y, Zhang H, Ling R, Li H, Harrison TJ (2000) The complete sequence of hepatitis E virus genotype 4 reveals an alternative strategy for translation of open reading frames 2 and 3. J Gen Virol 81:1675–1686PubMedGoogle Scholar
  200. Wang CY, Chang TY, Walfield AM, Ye J, Shen M, Chen SP, Li MC, Lin YL, Jong MH, Yang PC, Chyr N, Kramer E, Brown F (2002) Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine 20:2603–2610PubMedGoogle Scholar
  201. Wasley A, Fiore A, Bell BP (2006) Hepatitis A in the era of vaccination. Epidemiol Rev 28:101–111PubMedGoogle Scholar
  202. Weaver SC, Pfeffer M, Marriott K, Kang W, Kinney RM (1999a) Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am J Trop Med Hyg 60:441–448PubMedGoogle Scholar
  203. Weaver SC, Powers AM, Brault AC, Barrett AD (1999b) Molecular epidemiological studies of veterinary arboviral encephalitides. Vet J 157:123–128PubMedGoogle Scholar
  204. Wells VR, Plotch SJ, De Stefano JJ (2001) Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. Virus Res 74:119–132PubMedGoogle Scholar
  205. White DJ, Morse DL (eds) (2001) West Nile virus: detection, surveillance and control. Ann N Y Acad Sci 951:1–374Google Scholar
  206. Wilson JR, de Sessions PF, Leon MA, Scholle F (2008) West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 82:8262–8271PubMedGoogle Scholar
  207. Wirblich C, Thiel H, Meyers G (1996) Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70:7974–7983PubMedGoogle Scholar
  208. Wolinsky JS (1995) Rubella virus. In: Fields BN, Knipe DN, Howley PM (eds) Virology, 3rd edn. Raven, New York, pp 899–930Google Scholar
  209. Wong S, Lau S, Woo P, Yuen KY (2007) Bats as a continuing source of emerging infections in humans. Rev Med Virol 17:67–91PubMedGoogle Scholar
  210. Worm HC, Schlauder GG, Wurzer H, Mushahwar IK (2000) Identification of a novel variant of hepatitis E virus in Austria: sequence, phylogenetic and serological analysis. J Gen Virol 81:2885–2890PubMedGoogle Scholar
  211. Yamshchikov VF, Compans RW (1995) Formation of flavivirus envelope: role of the viral NS2B-NS3 protease. J Virol 96:1995–2003Google Scholar
  212. You JH, Reed ML, Hiscox JA (2007) Trafficking motifs in the SARS-coronavirus nucleocapsid protein. Biochem Biophys Res Commun 358:1015–1020PubMedGoogle Scholar
  213. Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J (2007) Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 365:324–335PubMedGoogle Scholar
  214. Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H (2007a) Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903PubMedGoogle Scholar
  215. Zhou Y, Tzeng WP, Yang W, Zhou Y, Ye Y, Lee HW, Frey TK, Yang J (2007b) Identification of a Ca2+−binding domain in the rubella virus non-structural protease. J Virol 81:7517–7528PubMedGoogle Scholar
  216. Zhou Y, Ushijima H, Frey TK (2007c) Genomic analysis of diverse rubella virus genotypes. J Gen Virol 88:932–941PubMedGoogle Scholar
  217. Ziebuhr J (2004) Molecular biology of severe acute respirator syndrome. Curr Opin Microbiol 7:412–419PubMedGoogle Scholar
  218. Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879PubMedGoogle Scholar
  219. Zoll J, Heus HA, van Kuppeveld FJ, Melchers WJ (2009) The structure-function relationship of the enterovirus 3’-UTR. Virus Res 139:209–216PubMedGoogle Scholar
  220. Zusinaite E, Tints K, Kiiver K, Spuul P, Karo-Astover L, Merits A, Sarand I (2007) Mutations at the palmitoylation site of non-structural protein nsP1 of Semliki Forest virus attenuate virus replication and cause accumulation of compensatory mutations. J Gen Virol 88:1977–1985PubMedGoogle Scholar
  221. Züst R, Cervantes-Barragán L, Kuri T, Blakqori G, Weber F, Ludewig B, Thiel V (2007) Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3:e109PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
    Email author
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMunichGermany

Personalised recommendations