CIRP Encyclopedia of Production Engineering

2014 Edition
| Editors: The International Academy for Production Engineering, Luc Laperrière, Gunther Reinhart

Hybrid Cutting

  • Fritz Klocke
  • Christoph Brummer
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-20617-7_6408

Synonyms

Definition

In hybrid cutting operations, the conventional cutting process is simultaneously supported by another form of energy, in particular by thermal energy (laser-induced heating of the workpiece) or kinetic energy (sonotrode-induced movement of the cutting tool).

Theory and Application

Motivation for Hybrid Cutting

Increasing demands on technical products require the application of high-performance materials in several industrial sectors. With regard to economic efficiency, the machining of these materials is limited.

An improvement in process capability regarding machinability, respectively, machining quality of challenging materials can be realized in “hybrid processes” by the application of additional forms of energy. Therefore, several hybrid approaches have been examined (e.g., different...

This is a preview of subscription content, log in to check access.

References

  1. Bausch S, Groll K (2003) Perspektiven für die laserunterstützte Zerspanung [Perspectives for laser-assisted machining – economic efficient machining of sophisticated materials]. wt Werkstattstechnik online 93:457–461 (in German)Google Scholar
  2. Bergs T (2002) Analyse der Wirkmechanismen beim laserunterstützten Drehen von Siliziumnitridkeramik [Analysis of the technical effect of laser-assisted turning of silicon-nitride ceramics]. Shaker, Aachen, in GermanGoogle Scholar
  3. Brecher C, Emonts M, Rosen CJ, Hermani JP (2011) Laser-assisted milling of advanced materials. Phys Procedia 12(Part A):599–606CrossRefGoogle Scholar
  4. Heselhaus M (2009) Unidirektionale schwingungsunterstützte Ultraprezisionszerspanung eisenhaltiger Werkstoffe mit definierter Schneidteilgeometrie [Unidirectional vibration assisted ultra-precision cutting of ferrous materials with defined cutting edge geometries]. Dissertation. Apprimus: Aachen (in German)Google Scholar
  5. Klocke F, Dambon O, Bulla B (2010) Diamond turning of aspheric steel molds for optics replication. In: Photonics west conference 2010, Proceedings of the SPIE, vol 7590Google Scholar
  6. Klocke F, König W (2007) Fertigungsverfahren - Abtragen, Generieren, Lasermaterialbearbeitung [Manufacturing technology 3 – material removal, additive manufacturing and laser processing], 4th edn. Springer, Heidelberg, Bd. 3, in GermanGoogle Scholar
  7. Klossowski U (1999) Laserunterstütztes Fräsen von TiAl6V4 [Laser-assisted machining of TiAl6V4]. Shaker, Aachen, in GermanGoogle Scholar
  8. Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. Annals CIRP 40(1):559–562CrossRefGoogle Scholar
  9. Rübenach O (2001) Schwingungsunterstützte Ultrapräzisionsbearbeitung optischer Gläser mit monokristallinen Diamantwerkzeugen [Vibration-based ultraprecision processing of optical glasses with the aid of monocrystalline diamond tools]. Shaker, Aachen, in GermanGoogle Scholar
  10. Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials – a review. Int J Mach Tool Manuf 50(8):663–680CrossRefGoogle Scholar
  11. Zaboklicki A (1998) Laserunterstütztes Drehen von dichtgesinterter Siliciumnitrid-Keramik [Laser-assisted turning of densely sintered silicon-nitride ceramics]. Shaker, Aachen, in GermanGoogle Scholar
  12. Zaeh MF, Wiedenmann R (2011) Laserunterstütztes Fräsen: Prozeßuntersuchung zum laserunterstützten Fräsen von Titanlegierungen [Laser-assisted milling - process analysis of laser-assisted milling of titanium alloys]. wt Werkstattstechnik online 7/8:482–486 (in German)Google Scholar

Copyright information

© CIRP 2014

Authors and Affiliations

  1. 1.Fraunhofer-Institut für ProduktionstechnologieAachenGermany
  2. 2.Lasermaterialbearbeitung, Fraunhofer-Institut für ProduktionstechnologieAachenGermany