Encyclopedia of Biophysics

2013 Edition
| Editors: Gordon C. K. Roberts

Segmented Flow Microfluidics

  • Ioannis G. Lignos
  • Robert C. R. Wootton
  • Andrew J. DeMello
  • Bradley M. Stone
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-16712-6_721

Introduction

During the past two decades, the use of miniaturized systems for the manipulation and processing of fluid samples has gained significant interest because of their chemical, biological, and biomedical applications. This interest in large part has been driven by concomitant advances in the areas of genomics, proteomics, drug discovery, high-throughput screening, and diagnostics, with a clearly defined need to perform rapid measurements on small sample volumes. At a basic level, microfluidic activities have been motivated by the fact that physical processes can be more easily controlled when instrumental dimensions are reduced to the micron scale. Key additional benefits include the ability to process small volumes of fluid, enhance analytical performance, reduce instrumental footprints, lower unit costs, and facilitate integration of functional components within monolithic substrates and the capacity to exploit atypical fluid behavior in both time and space.

In broad terms,...

This is a preview of subscription content, log in to check access.

References

  1. Baret JC. Surfactants in droplet-based microfluidics. Lab Chip. 2012;12(3):422–33.PubMedGoogle Scholar
  2. Berthier J. Microdrops and digital microfluidics. Norwich: William Andrew; 2008.Google Scholar
  3. Casadevall i Solvas X, deMello A. Droplet microfluidics: recent developments and future applications. Chem Commun. 2011;47:1936.Google Scholar
  4. deMello AJ. DNA amplification: does ‘small’ really mean ‘efficient’? Lab Chip. 2001;1:24N–9.Google Scholar
  5. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip. 2008;8:1262–4.PubMedCentralPubMedGoogle Scholar
  6. Fernandez-Nieves A, Wyss H, Mattsson J. Microgel suspensions. Fundamentals and applications. Weinheim: Wiley-VCH; 2011.Google Scholar
  7. Gu H, Duits MHG, Mugele F. Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci. 2011;12:2572–97.PubMedCentralPubMedGoogle Scholar
  8. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun. 2007;12:1218–20.Google Scholar
  9. Huebner A, Olguin L, Bratton D, Whyte G. Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem. 2008a;80:3890–6.PubMedGoogle Scholar
  10. Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip. 2008b;9:692–8.PubMedGoogle Scholar
  11. Hung L, Lee A. Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng. 2007;27:1–6.Google Scholar
  12. Kim SH, Hwang H, Lim CH, Shim JW, Yang SM. Packing of emulsion droplets: structural and functional motifs for multi-cored microcapsules. Adv Funct Mater. 2011;21:1608–15.Google Scholar
  13. Kreutz JE, Shukhaev A, Du W, Druskin S, Daugulis O, Ismagilov RF. Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J Am Chem Soc. 2010;132:3128–32.PubMedCentralPubMedGoogle Scholar
  14. Kumacheva E, Garstecki P. Microfluidic reactors for polymer particles. Chichester: Wiley-VCH; 2011.Google Scholar
  15. Lindström S, Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications. Lab Chip. 2010;10:3363–72.PubMedGoogle Scholar
  16. Link D, Anna S, Weitz D, Stone H. Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett. 2004;92:054503.PubMedGoogle Scholar
  17. Niu X, Zhang M, Peng S, Wen W, Sheng P. Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics. 2007;1:044101.PubMedCentralGoogle Scholar
  18. Niu X, Gulati S, Edel JB, deMello AJ. Pillar-induced droplet merging in microfluidic circuits. Lab Chip. 2008;8:1837–41.PubMedGoogle Scholar
  19. Niu X, Gielen F, Edel JB, deMello AJ. A microdroplet dilutor for high-throughput screening. Nat Chem. 2011;3:437–42.PubMedGoogle Scholar
  20. Renckens TJA, Janeliunas D, van Vliet H, van Esch JH, Mul G, Kreutzer MT. Micromolding of solvent resistant microfluidic devices. Lab Chip. 2011;11:2035–8.PubMedGoogle Scholar
  21. Schaerli Y, Wootton RC, Robinson T, Stein V, Dunsby C, Neil MAA, French PMW, deMello AJ, Abell C, Hollfelder F. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem. 2009;81:302–6.PubMedGoogle Scholar
  22. Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angew Chem Int Ed. 2006;45:7336–56.Google Scholar
  23. Teh S-Y, Lin R, Hung L-H, Lee AP. Droplet microfluidics. Lab Chip. 2008;8:198.PubMedGoogle Scholar
  24. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed. 2010;49:5846–68.Google Scholar
  25. Utada AS, Chu L-Y, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA. Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull. 2007;32:702–8.Google Scholar
  26. Wang J-T, Wang J, Han J-J. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small. 2011;7:1728–54.PubMedGoogle Scholar
  27. Wong I, Ho C-M. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid. 2009;7:291–306.PubMedCentralPubMedGoogle Scholar
  28. Wootton RCR, deMello AJ. Microfluidics: exploiting elephants in the room. Nature. 2010;464:839–40.PubMedGoogle Scholar
  29. Zhao C-X, He L, Qiao SZ, Middelberg APJ. Nanoparticle synthesis in microreactors. Chem Eng Sci. 2011;66:1463–79.Google Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2013

Authors and Affiliations

  • Ioannis G. Lignos
    • 1
  • Robert C. R. Wootton
    • 1
  • Andrew J. DeMello
    • 1
  • Bradley M. Stone
    • 2
  1. 1.Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering, ETH ZurichZurichSwitzerland
  2. 2.Department of ChemistrySan Jose State UniversitySan JoseUSA