Encyclopedia of Biophysics

2013 Edition
| Editors: Gordon C. K. Roberts

X-Ray Scattering of Lipid Membranes

  • Georg PabstEmail author
  • Frederick A. Heberle
  • John Katsaras
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-16712-6_554



X-ray scattering probes positional correlations on molecular to supramolecular length scales. Here, we focus on its application to lipid membranes.


Understanding the function of biological membranes is intimately coupled to determining their structure and their related dynamics. Lipid membranes, that is, biological membranes devoid of protein and carbohydrate networks, are highly useful models in understanding certain aspects of biological membranes. Dispersed in an aqueous solution, membrane lipids form an array of structures, which are highly dependent on their molecular chemistry (shape), as well as on the properties of their surrounding solution (e.g., pH, ionic strength, hydration, temperature, and pressure). X-ray techniques offer a probe-free and noninvasive toolset to study positional correlations of lipid aggregates on various length scales. These positional correlations may either originate...

This is a preview of subscription content, log in to check access.


  1. Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J. 2010;99:499–506.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Engelman DM, Rothman JE. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972;247:3694–7.PubMedGoogle Scholar
  3. Huang T-H, Lee CWB, Das Gupta SK, Blume A, Griffin RG. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Biochemistry. 1993;32:13277–31287.PubMedCrossRefGoogle Scholar
  4. Jerabek H, Pabst G, Rappolt M, Stockner T. Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. J Am Chem Soc. 2010;132:7990–7.PubMedCrossRefGoogle Scholar
  5. Karmakar, S. Structure and phase behaviour of lipid - cholesterol membranes. PhD Thesis, Jawaharlal Nehru University, India; 2005.Google Scholar
  6. Katsaras J. Adsorbed to a rigid substrate, DMPC multibilayers attain full hydration in all mesophases. Biophys J. 1998;75:2157–62.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Katsaras J, Raghunathan VA. Aligned lipid-water systems. In: Katsaras J, Gutberlet T, editors. Lipid bilayers. Structure and interactions. Berlin: Springer; 2000. p. 25–46.Google Scholar
  8. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson AJ, Katsaras J. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J. 2008;95:2356–67.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Lohner K, Sevcsik E, Pabst G. Liposome-based biomembrane mimetic systems: implications for lipid-peptide interactions. In: Leitmannova-Liu A, editor. Advances in planar lipid bilayers and liposomes, vol. 6. Elsevier: Amsterdam; 2008. p. 103–37.Google Scholar
  10. Lyatskaya Y, Liu Y, Tristram-Nagle S, Katsaras J, Nagle JF. Method for obtaining structure and interactions from oriented lipid bilayers. Phys Rev E. 2000;63:011907.CrossRefGoogle Scholar
  11. Mills TT, Toombes GES, Tristram-Nagle S, Smilgies DM, Feigenson GW, Nagle JF. Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys J. 2008a;95:669–81.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Mills TT, Tristram-Nagle S, Heberle FA, Morales NF, Zhao J, Wu J, Toombes GES, Nagle JF, Feigenson GW. Liquid-liquid domains in bilayers detected by wide angle X-ray scattering. Biophys J. 2008b;95:682–90.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–95.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Pabst G, Kučerka N, Nieh MP, Rheinstadter MC, Katsaras J. Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids. 2010;163:460–79.PubMedCrossRefGoogle Scholar
  15. Parsegian VA, Rand RP. Interaction in membrane assemblies. In: Lipowsky R, Sackmann E, editors. Handbook of biological physics. Amsterdam: Elsevier; 1995. p. 643–90.Google Scholar
  16. Salditt T. Thermal fluctuations and stability of solid-supported lipid membranes. J Phys Condens Matter. 2005;17:R287–314.CrossRefGoogle Scholar
  17. Sevcsik E, Pabst G, Richter W, Danner S, Amenitsch H, Lohner K. Interaction of LL-37 with model membrane systems of different complexity – influence of the lipid matrix. Biophys J. 2008;94:4688–99.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Shearman GC, Ces O, Templer RH, Seddon JM. Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter. 2006;18:S1105–24.PubMedCrossRefGoogle Scholar
  19. Tardieu A, Luzzati V, Reman FC. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973;75:711–33.PubMedCrossRefGoogle Scholar
  20. Uppamoochikkal P, Tristram-Nagle S, Nagle JF. Orientation of tie-lines in the phase diagram of DOPC:DPPC:cholesterol model biomembranes. Langmuir. 2010;26:17363–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2013

Authors and Affiliations

  • Georg Pabst
    • 1
    Email author
  • Frederick A. Heberle
    • 2
  • John Katsaras
    • 2
    • 3
  1. 1.Institute of Biophysics and Nanosystems ResearchAustrian Academy of SciencesGrazAustria
  2. 2.Neutron Sciences DirectorateOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Canadian Neutron Beam CentreNational Research CouncilChalk RiverCanada