Skip to main content

Ion Channels: New Tools to Track Cyclic Nucleotide Changes in Living Cells

  • Reference work entry
Encyclopedia of Biophysics

Synonyms

Cyclic nucleotides; Spatiotemporal organization of cyclic nucleotides; Ion channels as biosensors

Definition

Ion channels are used as biosensors in order to visualize the spatiotemporal changes that occur in cyclic nucleotides in living cells.

Introduction

Ion channels are pore-forming proteins that allow the flow of ions down their electrochemical gradient thus helping to establish and control the small voltage gradient across the plasma membrane of cells. They are present in the membranes that surround all biological cells and can be distinguished based upon their ion selectivity, gating mechanism, and sequence similarity. Ion channels can be voltage gated, ligand gated, pH gated, or mechanically gated. These gating criteria along with a combination of sequence similarity and ion selectivity further subdivide ion channels into several subtypes:

  • Voltage-gated ion channels which open and close in response to membrane potential such as the voltage-gated sodium channels,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Gerges A, Richter W, Lefebvre F, Matéo P, Varin A, Heymes C, Samuel J-L, Lugnier C, Conti M, Fischmeister R, Vandecasteele G. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on ß-adrenergic cAMP signals. Circ Res. 2009;105:784–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baruscotti M, Bucchi A, DiFrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther. 2005;107:59–79.

    CAS  PubMed  Google Scholar 

  • Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    CAS  PubMed  Google Scholar 

  • Biel M, Schneider A, Wahl C. Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med. 2002;12:206–12.

    CAS  PubMed  Google Scholar 

  • Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol. 2003;4:733–8.

    CAS  PubMed  Google Scholar 

  • Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, Lynch L, Karpen JW, Brown RL, Martens JR. Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol. 2004;65:503–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castro LRV, Verde I, Cooper DMF, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006;113:2221–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castro LRV, Schittl J, Fischmeister R. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes. Circ Res. 2010;107:1232–40.

    CAS  PubMed  Google Scholar 

  • Dhein S, Van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82.

    CAS  PubMed  Google Scholar 

  • Dubois J-M. Physiologie et pharmacologie des canaux Na et K des membranes axonales. J Physiol Paris. 1985;80:120–8.

    CAS  PubMed  Google Scholar 

  • Fagan KA, Schaack J, Zweifach A, Cooper DMF. Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells. FEBS Lett. 2001;500:85–90.

    CAS  PubMed  Google Scholar 

  • Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol A Mol Integr Physiol. 2005;142:136–43.

    PubMed  Google Scholar 

  • Fischmeister R, Castro LRV, Abi-Gerges A, Rochais F, Jurevičius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res. 2006;99:816–28.

    CAS  PubMed  Google Scholar 

  • Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA. 2001;98:2437–42.

    CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769–824.

    CAS  PubMed  Google Scholar 

  • Layland J, Li JM, Shah AM. Role of cyclic GMP-denendent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol. 2002;540:457–67.

    CAS  PubMed  Google Scholar 

  • Leroy J, Abi-Gerges A, Nikolaev VO, Richter W, Lechęne P, Mazet J-L, Conti M, Fischmeister R, Vandecasteele G. Spatiotemporal dynamics of ß-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res. 2008;102:1091–100.

    CAS  PubMed  Google Scholar 

  • Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82.

    CAS  PubMed  Google Scholar 

  • Méry P-F, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA. 1991;88:1197–201.

    PubMed  Google Scholar 

  • Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré A-M, Vandecasteele G, Lezoualc’h F. The cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res. 2005;97:1296–304.

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ. Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem. 2004;279:37215–8.

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Gambaryan S, Engelhardt S, Walter U, Lohse MJ. Real-time monitoring of live cell’s PDE2 activity: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem. 2005;280:1716–9.

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching ß1-adrenergic but locally confined ß2 -adrenergic receptor-mediated signaling. Circ Res. 2006;99:1084–91.

    CAS  PubMed  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 2004;5:1176–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rich TC, Karpen JW. Review article: cyclic AMP sensors in living cells: what signals can they actually measure? Ann Biomed Eng. 2002;30:1088–99.

    PubMed  Google Scholar 

  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DMF, Karpen JW. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol. 2000;116:147–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW. A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA. 2001a;98:13049–54.

    CAS  PubMed  Google Scholar 

  • Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol. 2001b;118:63–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet J-L, Cooper DMF, Fischmeister R. Negative feedback exerted by PKA and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes. An in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem. 2004;279:52095–105.

    CAS  PubMed  Google Scholar 

  • Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DMF, Conti M, Fischmeister R, Vandecasteele G. A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res. 2006;98:1081–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC. Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res. 2003;60:268–77.

    CAS  PubMed  Google Scholar 

  • Vandecasteele G, Rochais F, Abi-Gerges A, Fischmeister R. Functional localization of cAMP signalling in cardiac myocytes. Biochem Soc Trans. 2006;34:484–8.

    CAS  PubMed  Google Scholar 

  • Willoughby D, Cooper DM. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev. 2007;87:965–1010.

    CAS  PubMed  Google Scholar 

  • Willoughby D, Cooper DM. Live-cell imaging of cAMP dynamics. Nat Methods. 2008;5:29–36.

    CAS  PubMed  Google Scholar 

  • Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res. 2004;94:866–73.

    CAS  PubMed  Google Scholar 

  • Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol. 2000;2:25–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Fischmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Abi-Gerges, A., Fischmeister, R. (2013). Ion Channels: New Tools to Track Cyclic Nucleotide Changes in Living Cells. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_377

Download citation

Publish with us

Policies and ethics