Encyclopedia of Astrobiology

2011 Edition
| Editors: Muriel Gargaud, Ricardo Amils, José Cernicharo Quintanilla, Henderson James (Jim) CleavesII, William M. Irvine, Daniele L. Pinti, Michel Viso

Oxygen Isotopes

Reference work entry
DOI: https://doi.org/10.1007/978-3-642-11274-4_1138


Isotope anomaly, mass-independent-fractionation, organic matter, photochemistry, self-shielding, solar composition, water


Oxygen has three stable isotopes, oxygen-16, -17, and -18. In most studies on terrestrial samples, only the 18O/16O ratio is usually measured and discussed, where the mass-dependent fractionation law, expressed by δ17O ≈ 0.52 × δ18O, can be safely assumed. The δ17O values among extraterrestrial samples significantly deviate from the above shown relationship. This deviation bears the top-class importance in cosmochemistry, and naturally, in astrobiology.


Oxygen is the most abundant element in the planetary system, except among the giant planets, Jupiter and Saturn, where hydrogen and helium dominate their masses. Oxygen is accommodated as a major constituent in most types of building blocks, rocks (MO x), water (H 2O), and organics (CHONS), which are essential in constructing a terrestrial planet, particularly a habitable planet. Oxygen...
This is a preview of subscription content, log in to check access

References and Further Reading

  1. Clayton RN (1993) Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci 21:115–149MathSciNetADSCrossRefGoogle Scholar
  2. Clayton RN (2002) Self-shielding in the solar nebula. Nature 415:860–861ADSCrossRefGoogle Scholar
  3. Clayton RN (2005) Oxygen isotopes in meteorites. In: Davis AM (ed) Meteorites, comets and planets, vol 1, Treatise on geochemistry. Elesevier-Pergamon, Oxford, pp 129–142Google Scholar
  4. Clayton RN, Grossman L, Mayeda T (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488ADSCrossRefGoogle Scholar
  5. Hashizume K, Chaussidon M (2005) A non-terrestrial 16O-rich isotopic composition for the protosolar nebula. Nature 434:619–622ADSCrossRefGoogle Scholar
  6. Hashizume K, Chaussidon M (2009) Two oxygen isotopic components with extra-selenial origins observed among lunar metallic grains – in search for the solar wind component. Geochim Cosmochim Acta 73:3038–3054ADSCrossRefGoogle Scholar
  7. Hashizume K, Takahata N, Naraoka H, Sano Y (2011) Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nat Geosci (in press)Google Scholar
  8. Ireland Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith. Nature 440:776–778ADSCrossRefGoogle Scholar
  9. Kitamura Y, Shimizu M (1983) Oxygen isotopic anomaly and solar nebular photochemistry. Moon Planet 29:199–202ADSCrossRefGoogle Scholar
  10. Lyons JR, Young ED (2005) CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317–320ADSCrossRefGoogle Scholar
  11. Marcus RA (2004) Mass-independent isotope effect in the earliest processed solids in the solar system: a possible mechanism. J Chem Phys 121:8201–8211ADSCrossRefGoogle Scholar
  12. McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH, Coath CD, Kunihiro T, Wiens R, Allton J, Burnett DS (2010) Genesis SiC concentrator sample traverse: confirmation of 16O-depletion of terrestrial oxygen. Lunar Planet Sci 41:2589, CD-ROMADSGoogle Scholar
  13. Navon O, Wasserburg GJ (1985) Self-shielding in O2 – a possible explanation for oxygen isotope anomalies in meteorites? Earth Planet Sci Lett 73:1–16ADSCrossRefGoogle Scholar
  14. Nguyen AN, Stadermann FJ, Zinner E, Stroud RM, Alexander C, O’D M, Nittler LR (2007) Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. Astrophys J 656:1223–1240ADSCrossRefGoogle Scholar
  15. Sakamoto N, Seto Y, Itoh S, Kuramoto K, Fujino K, Nagashima K, Krot AN, Yurimoto H (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231–233ADSCrossRefGoogle Scholar
  16. Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345ADSCrossRefGoogle Scholar
  17. van Dishoeck EF, Black JH (1988) The photodissociation and chemistry of interstellar CO. Astrophys J 334:771–802ADSCrossRefGoogle Scholar
  18. Visser R, van Dishoeck EF, Black JH (2009) The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron Astrophys 503:323–343ADSCrossRefGoogle Scholar
  19. Young ED, Russell SS (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282:452–455ADSCrossRefGoogle Scholar
  20. Yurimoto H, Kuramoto K (2004) Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305:1763–1766ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Earth and Space SciencesOsaka UniversityToyonakaJapan