Encyclopedia of Astrobiology

2011 Edition
| Editors: Muriel Gargaud, Ricardo Amils, José Cernicharo Quintanilla, Henderson James (Jim) CleavesII, William M. Irvine, Daniele L. Pinti, Michel Viso

Nitrogen Isotopes

Reference work entry
DOI: https://doi.org/10.1007/978-3-642-11274-4_1065


Biological  nitrogen cycle, isotope anomaly,  isotope fractionation, organic formation, solar composition


Nitrogen has two stable isotopes, nitrogen-14 and -15. The abundance ratios of the two isotopes among geological samples, both extraterrestrial and terrestrial, exhibit wide variations, despite the first-order expectation of its stable nature. This expectation derives from the absence of important sinks or sources of these nuclides by any known nuclear reactions that may naturally occur, apart from their nucleosynthesis in several kinds of stellar environments. Nitrogen is one of the most important elements in organic matter preserved in geological samples. The isotopic variations of nitrogen may provide important clues to deciphering the formation processes for these samples.


The abundance ratios of nitrogen-14 and -15 among extraterrestrial samples exhibit more than a factor of 2 variation, the largest among all elements except for hydrogen....

This is a preview of subscription content, log in to check access

References and Further Reading

  1. Abbas MM, LeClair A, Owen T, Conrath BJ, Flasar FM, Kunde VG, Nixon CA, Achterberg RK, Bjoraker G, Jennings DJ, Orton G, Romani PN (2004) The nitrogen isotopic ratio in Jupiter’s atmosphere from observations by the composite infrared spectrometer on the Cassini spacecraft. Astrophys J 602:1063–1074ADSCrossRefGoogle Scholar
  2. Busemann H, Young AF, Alexander CMO'D, Hoppe P, Mukhopadhyay S, Nittler LR (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312:727–730ADSCrossRefGoogle Scholar
  3. Clayton RN (2002) Self-shielding in the solar nebula. Nature 415:860–861ADSCrossRefGoogle Scholar
  4. Floss C, Stadermann FJ, Bradley J, Dai ZR, Bajt S, Graham G (2004) Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle. Science 303:1355–1358ADSCrossRefGoogle Scholar
  5. Goldblatt C, Claire MW, Lenton TM, Matthews AJ, Watson AJ, Zahnle KJ (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geosci 2:891–896ADSCrossRefGoogle Scholar
  6. Hashizume K, Chaussidon M, Marty B, Robert F (2000) Solar wind record on the Moon: deciphering presolar from planetary nitrogen. Science 290:1142–1145ADSCrossRefGoogle Scholar
  7. Jia Y, Kerrich R (2004) Nitrogen 15–enriched Precambrian kerogen and hydrothermal systems. Geochem Geophys Geosyst 5:Q07005. doi:10.1029/2004GC000716ADSCrossRefGoogle Scholar
  8. Marty B, Dauphas N (2003) The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present. Earth Planet Sci Lett 206:397–410ADSCrossRefGoogle Scholar
  9. Marty B, Zimmermann L, Burnard PG, Wieler R, Heber VS, Burnett DL, Wiens RC, Bochsler P (2010) Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: evidence for large scale isotope heterogeneity in the early solar system. Geochim Cosmochim Acta 74:340–355ADSCrossRefGoogle Scholar
  10. Meibom A, Krot AN, Robert F, Mostefaoui S, Russell SS, Petaev MI, Gounelle M (2007) Nitrogen and carbon isotopic composition of the sun inferred from a high-temperature solar nebular condensate. Astrophys J 656:L33–L36ADSCrossRefGoogle Scholar
  11. Nakamura-Messenger K, Messenger S, Keller LP, Clemett SJ, Zolensky ME (2006) Organic globules in the Tagish lake meteorite: remnants of the protosolar disk. Science 314:1439–1442ADSCrossRefGoogle Scholar
  12. Pinti DL, Hashizume K (2001) 15N-depleted nitrogen in early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? Precambrian Res 105:85–88CrossRefGoogle Scholar
  13. Rodgers SD, Charnley SB (2008) Nitrogen superfractionation in dense cloud cores. Mon Not R Astron Soc 385:L48–L52ADSCrossRefGoogle Scholar
  14. Shen Y, Pinti DL, Hashizume K (2006) Biogeochemical cycles of sulfur and nitrogen in the Archean ocean and atmosphere. In: Benn K, Mareschal JC, Condie K (eds) Archean geodynamics and environments, vol 164, AGU geophysical monographs. American Geophysical Union, Washington, DC, pp 305–320CrossRefGoogle Scholar
  15. Sigman DM, Karsh KL, Casciotti KL (2008) Ocean process tracers: nitrogen isotopes in the ocean. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean science, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  16. Stadermann FJ, Hoppe P, Floss C, Heck PR, Hörz F, Huth J, Kearsley AT, Leitner J, Marhas KK, Mckeegan KD, Stephan T (2008) Stardust in Stardust – the C, N, and O isotopic compositions of Wild 2 cometary matter in Al foil impacts. Meteorit Planet Sci 43:299–313ADSCrossRefGoogle Scholar
  17. Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and Earth’s surface evolutions: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678CrossRefGoogle Scholar
  18. Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171:153–170ADSCrossRefGoogle Scholar
  19. Zinner E (2005) New results of presolar-grain studies and constraints on nucleosynthesis and stellar evolution. Nucl Phys A 758:619–626ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Earth and Space SciencesOsaka UniversityToyonakaJapan