International Encyclopedia of Statistical Science

2011 Edition
| Editors: Miodrag Lovric

Random Field

  • Mikhail P. Moklyachuk
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-04898-2_469

Random field X(t) on \(D \subset {\mathbb{R}}^{n}\)

This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Chung KL, Walsh JB (2005) Markov processes, Brownian motion, and time symmetry, 2nd ed. Springer, New York, NYzbMATHGoogle Scholar
  2. Glimm J, Jaffe A (1981) Quantum physics: a functional integral point of view. Springer, Berlin/Heidelberg/New YorkzbMATHGoogle Scholar
  3. Kerstan J, Matthes K, Mecke J (1974) Mathematische Lehrbücher und Monographien. II. Abt. Mathematische Monographien. Band XXVII. Akademie, BerlinGoogle Scholar
  4. Malyshev VA, Minlos RA (1985) Stochastic Gibbs fields. The method of cluster expansions. Nauka, MoskvazbMATHGoogle Scholar
  5. Monin AS, Yaglom AM (2007a) Statistical fluid mechanics: mechanics of turbulence, volume I. Edited and with a preface by Lumley JL,Dover, Mineola, NYGoogle Scholar
  6. Monin AS, Yaglom AM (2007b) Statistical fluid mechanics: mechanics of turbulence, volume II. Edited and with a preface by Lumley JL, Dover, Mineola, NYGoogle Scholar
  7. Rozanov YuA (1982) Markov random fields. Springer, New YorkzbMATHGoogle Scholar
  8. Yadrenko MI (1983) Spectral theory of random fields. Translation Series in Mathematics and Engineering. Optimization Software, Publications Division, New York; Springer, New YorkGoogle Scholar
  9. Yaglom AM (1987a) Correlation theory of stationary and related random functions. volume I. Basic results. Springer Series in Statistics. Springer, New YorkGoogle Scholar
  10. Yaglom AM (1987b) Correlation theory of stationary and related random functions, volume II. Supplementary notes and references. Springer Series in Statistics. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mikhail P. Moklyachuk
    • 1
  1. 1.Kyiv National Taras Shevchenko UniversityKyivUkraine