Khmaladze Transformation

  • Hira L. Koul
  • Eustace Swordson
Reference work entry


Consider the problem of testing the null hypothesis that a set of random variables X i, i = 1, , n, is a random sample from a specified continuous distribution function (d.f.) F. Under the null hypothesis, the empirical d.f.
$${F}_{n}(x) = \frac{1} {n}\sum \limits _{i=1}^{n}\mathbb{I}\{{X}_{ i} \leq x\}$$
This is a preview of subscription content, log in to check access

References and Further Reading

  1. Aalen OO (1978) Nonparametric inference for a family of counting processes. Ann Stat 6:701–726CrossRefMATHMathSciNetGoogle Scholar
  2. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic porcesses. Ann Math Stat 23:193–212CrossRefMATHMathSciNetGoogle Scholar
  3. Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New YorkCrossRefMATHGoogle Scholar
  4. Bai J (2003) Testing parametric conditional distributions of dynamic models. Rev Econ Stat 85:531–549CrossRefGoogle Scholar
  5. Dette H, Hetzler B (2008) A martingale-transform goodness-of-fit test for the form of the conditional variance.$=$stat
  6. Dette H, Hetzler B (2009) Khmaladze transformation of integrated variance processes with applications to goodness-of-fit testing. Math Meth Stat 18:97–116CrossRefMATHMathSciNetGoogle Scholar
  7. Doob JL (1949) Heuristic approach to the Kolmogorov-Smirnov theorems. Ann Math Stat 20:393–403CrossRefMATHMathSciNetGoogle Scholar
  8. Durbin J (1973) Weak convergence of the sample distribution function when parameters are estimated. Ann Statist 1:279–290CrossRefMATHMathSciNetGoogle Scholar
  9. Gikhman II (1954) On the theory of ω2 test. Math Zb Kiev State Univ 5:51–59Google Scholar
  10. Haywood J, Khmaladze EV (2007) On distribution-free goodness-of-fit testing of exponentiality. J Econometrics 143:5–18CrossRefMathSciNetGoogle Scholar
  11. Janssen A, Ünlü H (2008) Regions of alternatives with high and low power for goodness-of-fit tests. J Stat Plan Infer 138:2526–2543CrossRefMATHGoogle Scholar
  12. Kac M, Kiefer J, Wolfowitz J (1955) On tests of normality and other tests of goodness of fit based on distance methods. Ann Math Stat 26:189–211CrossRefMATHMathSciNetGoogle Scholar
  13. Khmaladze EV (1979) The use of ω2 tests for testing parametric hypotheses. Theor Probab Appl 24(2):283–301CrossRefMathSciNetGoogle Scholar
  14. Khmaladze EV (1981) Martingale approach in the theory of goodness-of-fit tests. Theor Probab Appl 26:240–257CrossRefMathSciNetGoogle Scholar
  15. Khmaladze EV (1988) An innovation approach to goodness-of-fit tests in R m. Ann Stat 16:1503–1516CrossRefMATHMathSciNetGoogle Scholar
  16. Khmaladze EV (1993) Goodness of fit problem and scanning innovation martingales. Ann Stat 21:798–829CrossRefMATHMathSciNetGoogle Scholar
  17. Khmaladze EV, Koul HL (2004) Martingale transforms goodness-of-fit tests in regression models. Ann Stat 32:995–1034CrossRefMATHMathSciNetGoogle Scholar
  18. Khmaladze EV, Koul HL (2009) Goodness of fit problem for errors in non-parametric regression: distribution free approach. Ann Stat 37:3165–3185CrossRefMATHMathSciNetGoogle Scholar
  19. Koenker R, Xiao Zh (2002) Inference on the quantile regression process. Econometrica 70:1583–1612CrossRefMATHMathSciNetGoogle Scholar
  20. Koenker R, Xiao Zh (2006) Quantile autoregression. J Am Stat Assoc 101:980–990CrossRefMATHMathSciNetGoogle Scholar
  21. Kolmogorov A (1933) Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari 4:83–91MATHGoogle Scholar
  22. Koul HL, Stute W (1999) Nonparametric model checks for time series. Ann Stat 27:204–236CrossRefMATHMathSciNetGoogle Scholar
  23. Koul HL, Sakhanenko L (2005) Goodness-of-fit testing in regression: A finite sample comparison of bootstrap methodology and Khmaladze transformation. Stat Probabil Lett 74:290–302CrossRefMATHMathSciNetGoogle Scholar
  24. Koul HL (2006) Model diagnostics via martingale transforms: a brief review. In: Frontiers in statistics, Imperial College Press, London, pp 183–206CrossRefGoogle Scholar
  25. Koul HL, Yi T (2006) Goodness-of-fit testing in interval censoring case 1. Stat Probabil Lett 76(7):709–718CrossRefMATHMathSciNetGoogle Scholar
  26. Koul HL, Song W (2008) Regression model checking with Berkson measurement errors. J Stat Plan Infer 138(6):1615–1628CrossRefMATHMathSciNetGoogle Scholar
  27. Koul HL, Song W (2009) Model checking in partial linear regression models with berkson measurement errors. Satistica SinicaGoogle Scholar
  28. Koul HL, Song W (2010) Conditional variance model checking. J Stat Plan Infer 140(4):1056–1072CrossRefMATHMathSciNetGoogle Scholar
  29. Maglaperidze NO, Tsigroshvili ZP, van Pul M (1998) Goodness-of-fit tests for parametric hypotheses on the distribution of point processes. Math Meth Stat 7:60–77MATHGoogle Scholar
  30. Nikabadze A, Stute W (1997) Model checks under random censorship. Stat Probabil Lett 32:249–259CrossRefMATHMathSciNetGoogle Scholar
  31. Nikitin Ya (1995) Asymptotic efficiency of nonparametric tests. Cambridge University Press, Cambridge, pp xvi + 274Google Scholar
  32. O’Quigley J (2003) Khmaladze-type graphical evaluation of the proportional hazards assumption. Biometrika 90(3):577–584CrossRefMathSciNetGoogle Scholar
  33. Scheike TH, Martinussen T (2004) On estimation and tests of time-varying effects in the proportional hazards model. Scand J Stat 31:51–62CrossRefMATHMathSciNetGoogle Scholar
  34. Shorack GR, Wellner JA (1986) Empirical processes with application to statistics. Wiley, New YorkGoogle Scholar
  35. Stute W, Thies S, Zhu Li-Xing (1998) Model checks for regression: an innovation process approach. Ann Stat 26:1916–1934CrossRefMATHGoogle Scholar
  36. Sun Y, Tiwari RC, Zalkikar JN (2001) Goodness of fit tests for multivariate counting process models with applications. Scand J Stat 28:241–256CrossRefMathSciNetGoogle Scholar
  37. Tsigroshvili Z (1998) Some notes on goodness-of-fit tests and innovation martingales (English. English, Georgian summary). Proc A Razmadze Math Inst 117:89–102MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hira L. Koul
    • 1
  • Eustace Swordson
    • 1
  1. 1.President of the Indian Statistical AssociationMichigan State UniversityEast LansingUSA