Mixed Integer Estimation and Validation for Next Generation GNSS

  • Peter J.G. Teunissen


The coming decade will bring a proliferation of Global Navigation Satellite Systems (GNSS) that are likely to revolutionize society in the same way as the mobile phone has done. The promise of a broader multi-frequency, multi-signal GNSS “system of systems” has the potential of enabling a much wider range of demanding applications compared to the current GPS-only situation. In order to achieve the highest accuracies one must exploit the unique properties of the received carrier signals. These properties include the multi-satellite system tracking, the mm-level measurement precision, the frequency diversity, and the integer ambiguities of the carrier phases. Successful exploitation of these properties results in an accuracy improvement of the estimated GNSS parameters of two orders of magnitude. The theory that underpins this ultraprecise GNSS parameter estimation and validation is the theory of integer inference. This theory is the topic of the present chapter.


Probability Density Function Global Navigation Satellite System Global Navigation Satellite System Probability Mass Function Float Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baarda W (1968) A testing procedure for use in geodetic networks. In: Publications in geodesy, 2(5). Netherlands Geodetic Commission, DelftGoogle Scholar
  2. Betti B, Crespi M, Sanso F (1993) A geometric illustration of ambiguity resolution in GPS theory and a Bayesian approach. Manuscr Geod 18:317–330Google Scholar
  3. Boon F, Ambrosius B (1997) Results of real-time applications of the LAMBDA method in GPS based aircraft landings. In: Proceedings of the KIS97, Banff, Canada, pp 339–345Google Scholar
  4. Buist PJ, Teunissen PJG, Giorgi G, Verhagen S (2008) Instantaneous multi-baseline ambiguity resolution with constraints. In: Proceedings of the international symposium on GPS/GNSS, Tokyo, Japan, pp 862–871Google Scholar
  5. Chang XW, Yang X, Zhou T (2005) MLAMBDA: a modified LAMBDA method for integer least-squares estimation. J Geod 79:552–565zbMATHCrossRefGoogle Scholar
  6. Cox DB, Brading JDW (1999) Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft. In: Proceedings of the ION NTM 99, San Diego, pp 739–745Google Scholar
  7. Dai L, Ling KV, Nagarajan N (2004) Real-time attitude determination for microsatellite by LAMBDA method combined with Kalman filtering. In: Proceedings of the AIAA-ICSS 2004, Montercy, vol 3118, pp 1–8Google Scholar
  8. de Jonge PJ (1998) A processing strategy for the application of the GPS in networks. In: Publications on geodesy, vol 46. Netherlands Geodetic Commission, DelftGoogle Scholar
  9. de Jonge PJ, Tiberius CCJM (1996a) The LAMBDA method for integer ambiguity estimation: implementation aspects. In: LGR-Series No. 12. Publications of the Delft Computing Centre, DelftGoogle Scholar
  10. de Jonge PJ, Tiberius CCJM (1996b) Integer estimation with the LAMBDA method. In: Beutler G et al (eds) Proceedings of the IAG symposium, vol 115, GPS trends in terrestrial, airborne and spaceborne applications, Boulder. Springer, Berlin pp 280–284Google Scholar
  11. de Jonge PJ, Tiberius CCJM, Teunissen PJG (1996) Computational aspects of the LAMBDA method for GPS ambiguity resolution. In: Proceedings of the ION GPS-96, Kansas City, pp 935–944Google Scholar
  12. Eissfeller B, Tiberius CCJM, Pany T, Biberger R, Schueler T, Heinrichs G (2002) Instantaneous ambiguity resolution for GPS/Galileo RTK positioning. J Gyros Navigat 38(3):71–91Google Scholar
  13. Farell JA, Barth M (1999) The global positioning system and inertial navigation. McGraw-Hill, New YorkGoogle Scholar
  14. Giorgi G, Teunissen PJG, Buist P (2008) A search and shrink approach for the constrained LAMBDA method: experimental results. In: Proceedings of the international GPS/GNSS symposium, Tokyo, Japan, pp 797–806Google Scholar
  15. Grafarend EW (1976) Geodetic applications of stochastic processes. Phys Earth Planet Interiors 12:151–179CrossRefGoogle Scholar
  16. Grafarend EW (2000) Mixed integer-real valued adjustment problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm. GPS Solut 4(2):31–44CrossRefGoogle Scholar
  17. Gundlich B, Koch KR (2002) Confidence regions for GPS baselines by Bayesian statistics. J Geod 76:55–62zbMATHCrossRefGoogle Scholar
  18. Gundlich B, Teunissen PJG (2004) Multiple models: fixed, switching and interacting. In: Sanso F (ed) Proceedings of the 5th Hotine-Marussi symposium. IAG symposia series, vol 127. Springer, Berlin, pp 129–136Google Scholar
  19. Hobiger T, Sekido M, Koyama Y, Kondo T (2009) Integer phase ambiguity estimation in next generation very long baseline interferometry. Adv Space Res 43(1):187–192CrossRefGoogle Scholar
  20. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation systems; GPS, GLONASS, Galileo and More. Springer, WienGoogle Scholar
  21. Ji S, Chen W, Zhao C, Ding X, Chen Y (2007) Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solut 11(4):259–268CrossRefGoogle Scholar
  22. Joosten P, Tiberius CCJM (2002) LAMBDA: FAQs. GPS Solut 6:109–114CrossRefGoogle Scholar
  23. Kampes BM, Hanssen RF (2004) Ambiguity resolution for permanent scatterer interferometry. IEEE Trans Geosci Remote Sens 42(11):2446–2453CrossRefGoogle Scholar
  24. Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  25. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  26. Liu LT, Hsu HT, Zhu YZ, Ou JK (1999) A new approach to GPS ambiguity decorrelation. J Geod 73:478–490zbMATHCrossRefGoogle Scholar
  27. Misra P, Enge P (2006) Global positioning system: signals, measurements, and performance, 2nd edn. Ganga-Jamuna, LincolnGoogle Scholar
  28. Moenikes R, Wendel J, Trommer GF (2005) A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints. In: Proceedings of the ION GNSS 2005, Long Beach, pp 81–87Google Scholar
  29. Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. Publications on geodesy, vol 52. Netherlands Geodetic Commission, DelftGoogle Scholar
  30. Park C, Teunissen PJG (2003) A new carrier phase ambiguity estimation for GNSS attitude determination systems. In: Proceedings of the international GPS/GNSS symposium, Tokyo, Japan, pp 1–8Google Scholar
  31. Parkinson B, Spilker JJ (1996) GPS: theory and applications, vols 1 and 2. AIAA, Washington, DCGoogle Scholar
  32. Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer Texts in Statistics. Springer, New YorkzbMATHGoogle Scholar
  33. Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge, WellesleyzbMATHGoogle Scholar
  34. Svendsen JGG (2006) Some properties of decorrelation techniques in the ambiguity space. GPS Solut 10:40–44CrossRefGoogle Scholar
  35. Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. In: Invited Lecture, Section IV theory and methodology, IAG general meeting, Beijing, China, August 1993. Also in: LGR Series, No. 6. Delft Geodetic Computing Centre, DelftGoogle Scholar
  36. Teunissen PJG (1995a) The invertible GPS ambiguity transformations. Manus Geod 20:489–497Google Scholar
  37. Teunissen PJG (1995b) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82CrossRefGoogle Scholar
  38. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72:606–612zbMATHCrossRefGoogle Scholar
  39. Teunissen PJG (1999a) The probability distribution of the GPS baseline for a class of integer ambiguity estimators. J Geod 70:65–82CrossRefGoogle Scholar
  40. Teunissen PJG (1999b) An optimality property of the integer least-squares estimator. J Geod 73: 587–593zbMATHCrossRefGoogle Scholar
  41. Teunissen PJG (2000) ADOP based upper bounds for the bootstrapped and the least-squares ambiguity success-rates. Artifi Satel 35(4):171–179Google Scholar
  42. Teunissen PJG (2002) The parameter distributions of the integer GPS model. J Geod 76:41–48zbMATHCrossRefGoogle Scholar
  43. Teunissen PJG (2003a) Integer aperture GNSS ambiguity resolution. Artif Satel 38(3):79–88Google Scholar
  44. Teunissen PJG (2003b) Theory of integer equivariant estimation with applications to GNSS. J Geod 77:402–410zbMATHCrossRefGoogle Scholar
  45. Teunissen PJG (2005) GNSS ambiguity resolution with optimally controlled failure-rate. Artif Satel 40(4):219–227Google Scholar
  46. Teunissen PJG (2006) Testing theory: an introduction, 2nd edn. VSSD, DelftGoogle Scholar
  47. Teunissen PJG (2007a) Influence of ambiguity precision on the success rate of GNSS ambiguity bootstrapping. J Geod 81:351–358zbMATHCrossRefGoogle Scholar
  48. Teunissen PJG (2007b) Least-squares prediction in linear models with integer unknowns. J Geod 81:565–579zbMATHCrossRefGoogle Scholar
  49. Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd enlarged edn. Springer, BerlinGoogle Scholar
  50. Teunissen PJG, Verhagen S (2008) GNSS carrier phase ambiguity resolution: challenges and open problems. In: IAG symposia series, vol 133. Springer, Berlin, pp 785–792Google Scholar
  51. Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41:138–151CrossRefGoogle Scholar
  52. Teunissen PJG, de Jonge PJ, Tiberius CCJM (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation time spans. J Geod 71:589–602zbMATHCrossRefGoogle Scholar
  53. Thomsen H (2000) Evaluation of upper and lower bounds on the sucess probability. In: Proceedings of the ION GPS 2000, Salt Lake City, pp 183–188Google Scholar
  54. Tiberius CCJM, de Jonge PJ (1995) Fast positioning using the LAMBDA method. In: Proceedings of the DSNS-95, Bergen, Norway, paper 30, 8 pGoogle Scholar
  55. Tsai YF, Juang JC (2007) Ambiguity resolution validation based on LAMBDA and eigendecomposition. In: Proceedings of the 63rd AM-ION GPS, Portland, pp 299–304Google Scholar
  56. Verhagen S (2003) On the approximation of the integer least-squares success-rate: which lower or upper bound to use? J Global Position Syst 2(2):117–124CrossRefGoogle Scholar
  57. Verhagen S (2005a) The GNSS integer ambiguities: estimation and validation. In: Publications on geodesy, vol 58. Netherlands Geodetic Commission, DelftGoogle Scholar
  58. Verhagen S (2005b) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110Google Scholar
  59. Verhagen S, Teunissen PJG (2004) PDF evaluation of the ambiguity residuals. In: Sanso F (ed) Proceedings of the 5th Hotine-Marussi symposium. IAG symposia series, vol 127. Springer, Berlin, pp 120–129Google Scholar
  60. Verhagen S, Teunissen PJG (2005) Performance comparison of the BIE estimator with the float and fixed GNSS ambiguity estimator. In: Sanso F (ed) IAG symposia series, vol 128. Springer, Berlin, pp 428–433Google Scholar
  61. Verhagen S, Teunissen PJG (2006) New global navigation satellite system ambiguity resolution method compared to existing approaches. J Guid Control Dynam 29(4):981–991CrossRefGoogle Scholar
  62. Wu SC, Bar-Sever YE (2006) Real-time sub-cm differential orbit determination of two low-earth orbiters with GPS bias-fixing. In: Proceedings of the ION GNSS 2006, Fort Worth, pp 2515–2522Google Scholar
  63. Wu F, Kubo N, Yasuda A (2004) Performance evaluation of GPS augmentation using quasi zenith satellite system. IEEE Trans Aerosp Electron Syst 40(4):1249–1260CrossRefGoogle Scholar
  64. Xu P (2001) Random simulation and GPS decorrelation. J Geod 75:408–423zbMATHCrossRefGoogle Scholar
  65. Xu P (2006) Voronoi cells, probabilistic bounds and hypothesis testing in mixed integer linear models. IEEE Trans Inform Theory 51(7):3122–3138Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter J.G. Teunissen
    • 1
  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia

Personalised recommendations