Sparsity in Inverse Geophysical Problems

  • Markus Grasmair
  • Markus Haltmeier
  • Otmar Scherzer


Many geophysical imaging problems are ill-posed in the sense that the solution does not depend continuously on the measured data. Therefore their solutions cannot be computed directly, but instead require the application of regularization. Standard regularization methods find approximate solutions with small L 2 norm. In contrast, sparsity regularization yields approximate solutions that have only a small number of nonvanishing coefficients with respect to a prescribed set of basis elements. Recent results demonstrate that these sparse solutions often much better represent real objects than solutions with small L 2 norm. In this survey, recent mathematical results for sparsity regularization are reviewed. As an application of the theoretical results, synthetic focusing in Ground Penetrating Radar is considered, which is a paradigm of inverse geophysical problem.


Ground Penetrate Radar Tikhonov Regularization Parameter Choice Residual Method Constrain Minimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Austrian Science Fund (FWF) within the national research networks Industrial Geometry, project 9203-N12, and Photoacoustic Imaging in Biology and Medicine, project S10505-N20. The authors thank Sylvia Leimgruber (alpS - Center for Natural Hazard Management in Innsbruck) and Harald Grossauer (University Innsbruck) for providing real life data sets.


  1. Andersson LE (1988) On the determination of a function from spherical averages. SIAM J Math Anal 19(1):214–232zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bleistein N, Cohen JK, Stockwell Jr JW (2001) Mathematics of multidimensional seismic imaging, migration, and inversion. Interdisciplinary applied mathematics: Geophysics and planetary sciences, vol 13. Springer, New YorkGoogle Scholar
  3. Bonesky T (2009) Morozov’s discrepancy principle and Tikhonov-type functionals. Inverse Probl 25(1):015015CrossRefMathSciNetGoogle Scholar
  4. Borcea L, Papanicolaou G, Tsogka C (2005) Interferometric array imaging in clutter. Inverse Probl 21(4):1419–1460zbMATHCrossRefMathSciNetGoogle Scholar
  5. Bredies K, Lorenz D (2009) Minimization of non-smooth, non-convex functionals by iterative thresholding. DFG-Schwerpunktprogramm 1324, Preprint 10, 2009Google Scholar
  6. Burger M, Osher S (2004) Convergence rates of convex variational regularization. Inverse Probl 20(5):1411–1421zbMATHCrossRefMathSciNetGoogle Scholar
  7. Candès EJ, Romberg J (2005) 1-MAGIC: recovery of sparse signals via convex programming. Technical report, 2005. Available at
  8. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2): 489–509CrossRefGoogle Scholar
  9. Claerbout J, Muir F (1973) Robust modeling of erratic data. Geophysics 38:826–844CrossRefGoogle Scholar
  10. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model Simul 4(4):1168–1200zbMATHCrossRefMathSciNetGoogle Scholar
  11. Courant R, Hilbert D (1962) Methods of mathematical physics, vol 2. Wiley-Interscience, New YorkzbMATHGoogle Scholar
  12. Daniels D (2004) Ground penetrating radar. The Institution of Electrical Engineers, LondonGoogle Scholar
  13. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commum Pure Appl Math 57(11):1413–1457zbMATHCrossRefGoogle Scholar
  14. Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc Natl Acad Sci USA 100(5):2197–2202zbMATHCrossRefMathSciNetGoogle Scholar
  15. Ekeland I, Temam R (1974) Analyse convexe et problèmes variationnels. Collection Études Mathématiques. Dunod, PariszbMATHGoogle Scholar
  16. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Mathematics and its applications. Kluwer Academic, DordrechtzbMATHGoogle Scholar
  17. Fawcett JA (1985) Inversion of n-dimensional spherical averages. SIAM J Appl Math 45(2): 336–341zbMATHCrossRefMathSciNetGoogle Scholar
  18. Finch D, Rakesh (2007) The spherical mean value operator with centers on a sphere. Inverse Probl 23(6):37–49Google Scholar
  19. Frühauf F, Heilig A, Schneebeli M, Fellin W, Scherzer O (2009) Experiments and algorithms to detect snow avalanche victims using airborne ground-penetrating radar. IEEE Trans Geosci Remote Sens 47(7):2240–2251CrossRefGoogle Scholar
  20. Grasmair M (2009) Well-posedness and convergence rates for sparse regularization with sublinear l q penalty term. Inverse Probl Imaging 3(3):383–387zbMATHCrossRefMathSciNetGoogle Scholar
  21. Grasmair M (2010) Non-convex sparse regularisation. J Math Anal Appl 365:19–28zbMATHCrossRefMathSciNetGoogle Scholar
  22. Grasmair M, Haltmeier M, Scherzer O (2008) Sparse regularization with l q penalty term. Inverse Probl 24(5):055020CrossRefMathSciNetGoogle Scholar
  23. Grasmair M, Haltmeier M, Scherzer O (2009a) Necessary and sufficient conditions for linear convergence of 1-regularization. Reports of FSP S105—“Photoacoustic Imaging” 18, University of Innsbruck, Austria, August 2009 (submitted)Google Scholar
  24. Grasmair M, Haltmeier M, Scherzer O (2009b) The residual method for regularizing ill-posed problems. Reports of FSP S105—“Photoacoustic Imaging” 14, University of Innsbruck, Austria, May 2009 (submitted)Google Scholar
  25. Groetsch CW (1984) The theory of Tikhonov regularization for Fredholm equations of the first kind. Pitman, BostonzbMATHGoogle Scholar
  26. Haltmeier M, Kowar R, Scherzer O (2005) Computer aided location of avalanche victims with ground penetrating radar mounted on a helicopter. In Lenzen F, Scherzer O, Vincze M (eds) Digital imaging and pattern recognition. Proceedings of the 30th workshop of the Austrian Association for Pattern Recognition, Obergugl, Austria, pp 1736–1744Google Scholar
  27. Haltmeier M, Scherzer O, Zangerl G (2009) Influence of detector bandwidth and detector size to the resolution of photoacoustic tomagraphy. In Breitenecker F, Troch I (eds) Argesim Report no. 35: Proceedings Mathmod 09, Vienna, pp 1736–1744Google Scholar
  28. Hofmann B, Kaltenbacher B, Pöschl C, Scherzer O (2007) A convergence rates result in Banach spaces with non-smooth operators. Inverse Probl 23(3):987–1010zbMATHCrossRefGoogle Scholar
  29. Ivanov VK, Vasin VV, Tanana VP (2002) Theory of linear ill-posed problems and its applications 2nd edn. Inverse and ill-posed problems series. (Translated and revised from the 1978 Russian original). VSP, UtrechtGoogle Scholar
  30. Kuchment P, Kunyansky LA (2008) Mathematics of thermoacoustic and photoacoustic tomography. Eur J Appl Math 19:191–224zbMATHCrossRefMathSciNetGoogle Scholar
  31. Levy S, Fullagar T (1981) Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46:1235-1243CrossRefGoogle Scholar
  32. Lorenz D (2008) Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. J Inverse Ill-Posed Probl 16(5):463–478zbMATHCrossRefMathSciNetGoogle Scholar
  33. Louis AK, Quinto ET (2000) Local tomographic methods in sonar. In Surveys on solution methods for inverse problems. Springer, Vienna, pp 147–154Google Scholar
  34. Neubauer A (1997) On converse and saturation results for Tikhonov regularization of linear ill-posed problems. SIAM J Numer Anal 34:517–527zbMATHCrossRefMathSciNetGoogle Scholar
  35. Norton SJ, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical and spherical apertures. IEEE Trans Biomed Eng 28(2):202–220CrossRefGoogle Scholar
  36. Oldenburg D, Scheuer T, Levy S (1983) Recovery of the acoustic impedance from reflection seismograms. Geophysics 48:1318–1337CrossRefGoogle Scholar
  37. Patch SK, Scherzer O (2007) Special section on photo- and thermoacoustic imaging. Inverse Probl 23:S1–S122zbMATHCrossRefMathSciNetGoogle Scholar
  38. Renegar J (2001) A mathematical view of interior-point methods in convex optimization. MPS/ SIAM series on optimization. SIAM, PhiladelphiazbMATHCrossRefGoogle Scholar
  39. Resmerita E (2005) Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Probl 21(4):1303–1314zbMATHCrossRefMathSciNetGoogle Scholar
  40. Santosa F, Symes WW (1986) Linear inversion of band-limited reflection seismograms. SIAM J Sci Comput 7(4):1307–1330zbMATHCrossRefMathSciNetGoogle Scholar
  41. Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2009) Variational methods in imaging. Applied mathematical sciences vol 167. Springer, New YorkGoogle Scholar
  42. Stolt RH (1978) Migration by Fourier transform. Geophysics 43:23–48CrossRefGoogle Scholar
  43. Symes WW (2009) The seismic reflection inverse problem. Inverse Probl 15(12):123008CrossRefMathSciNetGoogle Scholar
  44. Zarzer CA (2009) On Tikhonov regularization with non-convex sparsity constraints. Inverse Probl 25:025006CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Grasmair
    • 1
  • Markus Haltmeier
    • 1
  • Otmar Scherzer
    • 1
  1. 1.Computational Science CenterUniversity of ViennaViennaAustria

Personalised recommendations