Advertisement

Geomathematics: Its Role, Its Aim, and Its Potential

  • Willi Freeden
Reference work entry

Abstract

During the last decades geosciences and geoengineering were influenced by two essential scenarios: First, the technological progress has completely changed the observational and measurement techniques. Modern high-speed computers and satellite-based techniques more and more enter all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, namely efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods, i.e., geomathematics.

This chapter deals with geomathematics, its role, its aim, and its potential. Moreover, the “circuit” geomathematics is exemplified by two classical problems involving the Earth’s gravity field, namely gravity field determination from terrestrial deflections of the vertical and ocean flow modeling from satellite (altimeter measured) ocean topography.

Keywords

Gravity Field Mantle Plume Geoidal Height Equipotential Surface Gravity Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albertella A, Savcenko R, Bosch W, Rummel R (2008) Dynamic ocean topography – the geodetic approach. IAPG/FESG Mittelungen, vol. 27, TU MünchenGoogle Scholar
  2. Ansorge R, Sonar T (2009) Mathematical models of fluid dynamics, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. Bach V, Fraunholz W, Freeden W, Hein F, Müller J, Müller V, Stoll H, von Weizsächer H, Fischer H (2004) Curriculare Standards des Fachs Mathematik in Rheinland-Pfalz (Vorsitz: W. Freeden). Studie: Reform der Lehrerinnen- und Lehrerausbildung, MWWFK Rheinland-PfalzGoogle Scholar
  4. Bruns EH (1878) Die Figur der Erde. Publikation Königl. Preussisch. Geodätisches Institut. P. Stankiewicz, BerlinGoogle Scholar
  5. Emmermann R, Raiser B (1997) Das System Erde-Forschungsgegenstand des GFZ. Vorwort des GFZ-Jahresberichts 1996/1997, V-X, GeoForschungsZentrum, PotsdamGoogle Scholar
  6. Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Stuttgart, LeipzigzbMATHGoogle Scholar
  7. Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser Verlag, Boston, Basel, BerlinzbMATHGoogle Scholar
  8. Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences – a scalar, vectorial, and tensorial setup. Springer, BerlinzbMATHGoogle Scholar
  9. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science Publications, Clarendon, OxfordzbMATHGoogle Scholar
  10. Helmert FR (1881) Die mathematischen und physikalischen Theorien der Höheren Geodäsie 1+2, B.G. Teubner, Verlagsgesellschaft LeipzigGoogle Scholar
  11. Jakobs F, Meyer H (1992) Geophysik – Signale aus der Erde. Teubner, LeipzigGoogle Scholar
  12. Kümmerer B (2002) Mathematik. Campus, Spektrum der Wissenschaftsverlagsgesellschaft, 1–15Google Scholar
  13. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Shinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt, MDGoogle Scholar
  14. Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, GöttingenGoogle Scholar
  15. Nerem RS, Koblinski CJ (1994) The geoid and ocean circulation (geoid and its geophysical interpretations). In: Vanicek P, Christon NT (eds.). CRC Press, Boca Ruton, FL, pp 321–338Google Scholar
  16. Neumann F (1887) Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154Google Scholar
  17. Pedlovsky J (1979) Geophysical fluid dynamics. Springer, New YorkGoogle Scholar
  18. Pesch HJ (2002) Schlüsseltechnologie Mathematik. Teubner, Stuttgart, Leipzig, WiesbadenGoogle Scholar
  19. Ritter JRR, Christensen UR (eds) (2007) Mantle plumes – a multidisciplinary approach. Springer, HeidelbergGoogle Scholar
  20. Rummel R (2002) Dynamik aus der Schwere – Globales Gravitationsfeld. An den Fronten der Forschung (Kosmos, Erde, Leben), Hrsg. R. Emmermann u.a., Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 122. Versammlung, HalleGoogle Scholar
  21. Sonar T (2001) Angewandte Mathematik, Modellbildung und Informatik: Eine Einführung für Lehramtsstudenten, Lehrer und Schüler. Vieweg, Braunschweig, WiesbadenzbMATHGoogle Scholar
  22. Stokes GG (1849) On the variation of gravity at the surface of the Earth. Trans. Cambr Phil Soc 8:672–712. In: Mathematical and physical papers by George Gabriel Stokes, Vol. II. Johanson Reprint Corporation, New York, pp 131–171Google Scholar
  23. Weyl H (1916) Über die Gleichverteilung von Zahlen mod. Eins Math Ann 77:313–352zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Willi Freeden
    • 1
  1. 1.Geomathematics GroupTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations