Swarm Intelligence

  • David W. Corne
  • Alan Reynolds
  • Eric Bonabeau


Increasing numbers of books, websites, and articles are devoted to the concept of “swarm intelligence.” Meanwhile, a perhaps confusing variety of computational techniques are seen to be associated with this term, such as “agents,” “emergence,” “boids,” “ant colony optimization,” and so forth. In this chapter, we attempt to clarify the concept of swarm intelligence and its associations, and to provide a perspective on its inspirations, history, and current state. We focus on the most popular and successful algorithms that are associated with swarm intelligence, namely, ant colony optimization, particle swarm optimization, and (more recently) foraging algorithms, and we cover the sources of natural inspiration with these foci in mind. We then round off the chapter with a brief review of current trends.


Particle Swarm Optimization Social Insect Swarm Intelligence Termite Mound Travel Salesperson Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alaya I (2007) Ant colony optimization for multi-objective optimization problems. In: Proceedings of the 19th IEEE international conference on tools with artificial intelligence. Patras, Greece, pp 450–457CrossRefGoogle Scholar
  2. Appleby S, Steward S (1994) Mobile software agents for control in telecommunications networks. BT Technol J 12(2):104–113Google Scholar
  3. Berg H, Brown D (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504CrossRefGoogle Scholar
  4. van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239CrossRefGoogle Scholar
  5. Biswas A, Dasgupta S, Das S, Abraham A (2007) Synergy of PSO and bacterial foraging optimization – A comparative study on numerical benchmarks. In: Corchado E et al. (eds) Innovations in hybrid intelligent systems. Advances in soft computing, vol 44. Springer, Germany, pp 255–263CrossRefGoogle Scholar
  6. Blum C (2005a) Ant colony optimization: Introduction and recent trends. Phys Life Rev 2(4):353–373CrossRefGoogle Scholar
  7. Blum C (2005b) Beam-ACO – hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comp Oper Res 32(6):1565–1591CrossRefGoogle Scholar
  8. Bonabeau E, Guérin S, Snyers D, Kuntz P, Theraulaz G (2000) Three-dimensional architectures grown by simple ‘stigmergic’ agents. Biosystems 56:13–32CrossRefGoogle Scholar
  9. Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193CrossRefGoogle Scholar
  10. Bonabeau E, Theraulaz G, Deneubourg J-L, Franks NR, Rafelsberger O, Joly J-L, Blanco S (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Phil Trans Royal Soc B Biol Sci 353(1375):1561–1576CrossRefGoogle Scholar
  11. Budrene E, Berg H (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349:630–633CrossRefGoogle Scholar
  12. Chen T-C, Tsai P-W, Chu S-C, Pan J-S (2007) A novel optimization approach: bacterial-GA foraging. In: Proceedings of the second international conference on innovative computing, information and control (ICICIC). IEEE Computer Press, Washington, DC, p 391CrossRefGoogle Scholar
  13. Cicirello VA, Smith SF (2001) Wasp nests for self-configurable factories. In: Proceedings of fifth international conference on autonomous agents. ACM, New York, pp 473–480CrossRefGoogle Scholar
  14. Coello Coello CA, Toscano Pulido G, Salazar Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comp 8(3):256–279CrossRefGoogle Scholar
  15. Colorni A, Dorigo M, Maniezzo V (1992a) Distributed optimization by ant colonies. In: Varela F, Bourgine P (eds) Proceedings of the first European conference on artificial life, Elsevier, Paris, France, pp 134–142Google Scholar
  16. Colorni A, Dorigo M, Maniezzo V (1992b) An investigation of some properties of an ant algorithm. In: Männer R, Manderick B (eds) Proceedings of the parallel problem solving from nature conference (PPSN 92), Elsevier, Brussels, Belgium, pp 509–520Google Scholar
  17. Deneubourg J-L, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1991) The dynamics of collective sorting: Robot-like ants and ant-like robots. In: Arcady-Meyer J, Wilson S (eds) From animals to animats: proceedings of first international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 356–365Google Scholar
  18. Depickere S, Fresneau D, Deneubourg J-L (2004) Dynamics of aggregation in Lasius niger (Formicidae): Influence of polyethism. Insectes Sociaux 51(1):81–90CrossRefGoogle Scholar
  19. DeRosier D (1998) The turn of the screw: the bacterial flagellar motor. Cell 93:17–20CrossRefGoogle Scholar
  20. Di Caro G, Dorigo M (1998) AntNet: distributed stigmergetic control for communications networks. JAIR 9:317–365zbMATHGoogle Scholar
  21. Di Caro G, Ducatelle F, Gambardella LM (2008) Theory and practice of ant colony optimization for routing in dynamic telecommunications networks. In: Sala N, Orsucci F (eds) Reflecting interfaces: the complex coevolution of information technology ecosystems. Idea Group, HersheyGoogle Scholar
  22. Doerner KF, Gutjahr WJ, Hartl RF, Strauss C, Stummer C (2006) Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur J Oper Res 171:830–841MathSciNetCrossRefzbMATHGoogle Scholar
  23. Dorigo M, Maniezzo V, Colorni A (1991) The ant system: an autocatalytic optimizing process. Technical Report No. 91-016 Revised. Politecnico di Milano, ItalyGoogle Scholar
  24. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of co-operating agents. IEEE Trans Syst Man Cybernetics – Part B: Cybernetics 26(1):29–41CrossRefGoogle Scholar
  25. Dreo J, Siarry P (2006) An ant colony algorithm aimed at dynamic continuous optimization. Appl Math Comput 181:457–467MathSciNetCrossRefzbMATHGoogle Scholar
  26. Ducatelle F, Förster A, Di Caro G, Gambardella LM (2009) New task allocation methods for robotic swarms. In: Ninth IEEE/RAS conference on autonomous robot systems and competitions. Castelo Branco, Portugal, May 2009Google Scholar
  27. Franks NR, Sendova-Franks A (1992) Brood sorting by ants: Distributing the workload over the work-surface. Behav Ecol Sociobiol 30(2):109–123CrossRefGoogle Scholar
  28. Gambardella LM, Taillard É, Agazzi G (1999) MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, London, pp 63–76Google Scholar
  29. García-Martínez C, Cordón O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180:116–148CrossRefzbMATHGoogle Scholar
  30. Gaubert L, Redou P, Harrouet F, Tisseau J (2007) A first mathematical model of brood sorting by ants: Functional self organisation without swarm-intelligence. Ecol Complexity 4:234–241CrossRefGoogle Scholar
  31. Grassé P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6:41–84CrossRefGoogle Scholar
  32. Grassé P-P (1984) Termitologia, Tome II – Fondation des sociétés construction. Masson, ParisGoogle Scholar
  33. Guney K, Basbug S (2008) Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm. Prog Electromagnet Res 79:475–497CrossRefGoogle Scholar
  34. Gutjahr WJ (2007) Mathematical runtime analysis of ACO algorithms: Survey on an emerging issue. Swarm Intell 1(1):59–79CrossRefGoogle Scholar
  35. Häckel S, Fischer M, Zechel D, Teich T (2008) A multi-objective ant colony approach for pareto-optimization using dynamic programming. In: Proceedings of the tenth annual conference on genetic and evolutionary computation (GECCO). ACM, New York, pp 33–40CrossRefGoogle Scholar
  36. Handl J, Meyer B (2007) Ant-based and swarm-based clustering. Swarm Intell 1(2):95–113CrossRefGoogle Scholar
  37. Handl J, Knowles J, Dorigo M (2006) Ant-based clustering and topographic mapping. Artif Life 12(1):35–61CrossRefGoogle Scholar
  38. Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS, Washington, DCGoogle Scholar
  39. Holden N, Freitas AA (2007) A hybrid PSO/ACO algorithm for classification. In: Proceedings of the 2007 GECCO conference companion on genetic and evolutionary computation. London, UK, pp 2745–2750Google Scholar
  40. Hussein O, Saadawi T (2003) Ant routing algorithm for mobile ad-hoc networks (ARAMA). In: Proceedings of IEEE conference on performance, computing and communications, Phoenix, Arizona, USA, pp 281–290CrossRefGoogle Scholar
  41. Jordan J, Helwig S, Wanka R (2008) Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarms. In: Proceedings of the genetic and evolutionary computation conference (GECCO). Atlanta, Georgia, USA, pp 49–56Google Scholar
  42. Karlson P, Luscher M (1959) Pheromones: A new term for a class of biologically active substances. Nature 183:155–176CrossRefGoogle Scholar
  43. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international joint conference on neural networks. IEEE Press, Piscataway, pp 1942–1948Google Scholar
  44. Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177:3918–3937CrossRefGoogle Scholar
  45. Korb O, Stützle T, Exner TE (2007) An ant colony optimization approach to flexible protein-ligand docking. Swarm Intell 1(2):115–134CrossRefGoogle Scholar
  46. Lee Z-J, Su S-F, Chuang C-C, Liu K-H (2008) Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl Soft Comput 8:55–78CrossRefGoogle Scholar
  47. Lin BMT, Lu CY, Shyu SJ, Tsai CY (2008) Development of new features of ant colony optimization for flowshop scheduling. Int J Prod Econ 112:742–755CrossRefGoogle Scholar
  48. Lumer E, Faieta B (1994) Diversity and adaptation in populations of clustering ants. In: Cliff D et al. (eds) From animals to animats 3: Proceedings of third international conference on simulation of adaptive behaviour. MIT Press, Cambridge, pp 501–508Google Scholar
  49. Mariano CE, Morales E (1999) MOAQ: An ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference (GECCO 99). Orlando, Florida, USA, pp 894–901Google Scholar
  50. Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg J-L, Dorigo M (2005) The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot Automat Mag 12(2):21–28CrossRefGoogle Scholar
  51. Nakrani S, Tovey C (2003) On honey bees and dynamic allocation in an internet server ecology. In: Proceedings of second international workshop on the mathematics and algorithms of social insectsGoogle Scholar
  52. Niu B, Zhu Y, He X, Zeng X (2006) Optimum design of PID controllers using only a germ of intelligence. In: Proceedings of sixth world congress on intelligent control and automation. IEEE Press, Piscataway, NJ, pp 3584–3588Google Scholar
  53. Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332CrossRefGoogle Scholar
  54. Partridge BL (1982) The structure and function of fish schools. Scient Am June:114–123Google Scholar
  55. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Cont Syst Mag June:52–68Google Scholar
  56. Pini G, Brutschy A, Birattari M, Dorigo M (2009) Interference reduction through task partitioning in a robotic swarm. In: Sixth international conference on informatics in control, automation and robotics (ICINCO 09). Milan, ItalyGoogle Scholar
  57. Potts WK (1984) The chorus-line hypothesis of manoeuvre coordination in avian flocks. Lett Nat 309:344–345CrossRefGoogle Scholar
  58. Quijano N, Passino KM (2007a) Honey bee social foraging algorithms for resource allocation. Part I: Algorithm and theory. In: Proceedings of 2007 American control conference. New York, USA, pp 3383–3388Google Scholar
  59. Quijano N, Passino KM (2007b) Honey bee social foraging algorithms for resource allocation. Part II: Application. In: Proceedings of 2007 American control conference, New York City, New York, USA, pp 3389–3394Google Scholar
  60. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308MathSciNetGoogle Scholar
  61. Reynolds C (1987) Flocks, herds and schools: A distributed behavioral model. Comput Grap 21(4):25–34MathSciNetCrossRefGoogle Scholar
  62. Roberts J, Zufferey J, Floreano D (2008) Energy management for indoor hovering robots. In: IEEE (eds) IEEE/RSJ international conference on intelligent robots and systems (IROS-2008). Nice, FranceGoogle Scholar
  63. Rosati L, Berioli M, Reali G (2008) On ant routing algorithms in ad hoc networks with critical connectivity. Ad Hoc Netw 6(6):827–859CrossRefGoogle Scholar
  64. Sahin E (2005) Swarm robotics: From sources of inspiration to domains of application. In: Swarm robotics. LNCS, vol 3342. Springer, Berlin, pp 10–20CrossRefGoogle Scholar
  65. Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L (1996) Ant-based load balancing in telecommunications networks. Adap Behav 5(2):169–207CrossRefGoogle Scholar
  66. Schoonderwoerd R, Holland O, Bruten J (1997) Ant-like agents for load balancing in telecommunications networks. In: Proceedings of the first international conference on autonomous agents. ACM, New York, pp 209–216CrossRefGoogle Scholar
  67. Segall J, Block S, Berg H (1986) Temporal comparisons in bacterial chemotaxis. PNAS 83:8987–8991CrossRefGoogle Scholar
  68. Shi XH, Liang YC, Lee HP, Lu C, Wang LM (2005) An improved GA and a novel PSO-GA-based hybrid algorithm. Inf Process Lett 93:255–261MathSciNetCrossRefzbMATHGoogle Scholar
  69. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185:1155–1173MathSciNetCrossRefzbMATHGoogle Scholar
  70. Tang WJ, Wu QH, Saunders JR (2007) A bacterial swarming algorithm for global optimization. In: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC 2007). IEEE Service Center, Piscataway, pp 1207–1212CrossRefGoogle Scholar
  71. Theraulaz G (1994) Du super-organisme à l’intelligence en essaim: modèles et représentations du fonctionnement des sociétés d’insectes. In: Bonabeau E, Theraulaz G (eds) Intelligence collective. Hermes, Paris, pp 29–109Google Scholar
  72. Theraulaz G, Bonabeau E (1995) Modelling the collective building of complex architectures in social insects with lattice swarms. J Theor Biol 177(4):381–400CrossRefGoogle Scholar
  73. Theraulaz G, Bonabeau E, Nicolis SC, Sole RV, Fourcassie V, Blanco S, Fournier R, Joly J-L, Fernandez P, Grimal A, Dalle P, Deneubourg J-L (2002) Spatial patterns in ant colonies. PNAS 99(15):9645–9649CrossRefzbMATHGoogle Scholar
  74. Tripathy M, Mishra S (2007) Bacteria foraging-based solution to optimize both real power loss and voltage stability limit. IEEE Trans Power Syst 22(1):240–248CrossRefGoogle Scholar
  75. Vander Meer RK, Alonso LE (1998a) Pheromone directed behaviour in ants. In: Vander Meer RK et al. (eds) Pheromone communication in social insects. Westview, Boulder, CO, pp 159–192Google Scholar
  76. Vander Meer RK, Breed M, Winston M, Espelie KE (eds) (1998b) Pheromone communication in social insects. Westview, Boulder, CO, pp 368Google Scholar
  77. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MAGoogle Scholar
  78. Waibel M, Keller L, Floreano D (2009) Genetic team composition and level of selection in the evolution of multi-agent systems. IEEE Trans Evol Comput 13(3):648–660CrossRefGoogle Scholar
  79. Walker RL (2000) Dynamic load balancing model: Preliminary assessment of a biological model for a pseudo-search engine. In: Parallel and distributed processing. LNCS, vol 1800. Springer, Berlin, pp 620–627CrossRefGoogle Scholar
  80. Yang B, Chen Y, Zhao Z (2007) Survey on applications of particle swarm optimization in electric power systems. In: IEEE international conference on control and automation. Guangzhou, China, pp 481–486CrossRefGoogle Scholar
  81. Yin P-Y, Glover F, Laguna M, Zhu J-X (2007) Scatter PSO – A more effective form of particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2007). IEEE Press, Piscataway, NJ, pp 2289–2296Google Scholar
  82. Yuan H, Li Y, Li W, Zhao K, Wang D, Yi R (2008) Combining immune with ant colony algorithm for geometric constraint solving. In: Proceedings of the 2008 workshop on knowledge discovery and data mining. IEEE Computer Society, Washington, DC, pp 524–527CrossRefGoogle Scholar
  83. Zhang R, Wu C (2008) An effective immune particle swarm optimization algorithm for scheduling job shops. In: Proceedings of the third IEEE conference on industrial electronics and applications. Singapore, pp 758–763Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David W. Corne
    • 1
  • Alan Reynolds
    • 2
  • Eric Bonabeau
    • 3
  1. 1.School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK
  2. 2.School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK
  3. 3.Icosystem CorporationCambridgeUSA

Personalised recommendations