Computational Nature of Gene Assembly in Ciliates

  • Robert Brijder
  • Mark Daley
  • Tero Harju
  • Nataša Jonoska
  • Ion Petre
  • Grzegorz Rozenberg
Reference work entry


Ciliates are a very diverse and ancient group of unicellular eukaryotic organisms. A feature that is essentially unique to ciliates is the nuclear dualism, meaning that they have two functionally different types of nuclei, the macronucleus and the micronucleus. During sexual reproduction a micronucleus is transformed into a macronucleus – this process is called gene assembly, and it is the most involved naturally occurring example of DNA processing that is known to us. Gene assembly is a fascinating research topic from both the biological and the computational points of view.

In this chapter, several approaches to the computational study of gene assembly are considered. This chapter is self-contained in the sense that the basic biology of gene assembly as well as mathematical preliminaries are introduced. Two of the most studied molecular models for gene assembly, intermolecular and intramolecular, are presented and the main mathematical approaches used in studying these models are discussed. The topics discussed in more detail include the string and graph rewriting models, invariant properties, template-based DNA recombination, and topology-based models. This chapter concludes with a brief discussion of a number of research topics that, because of the space restrictions, could not be covered in this chapter.


Regular Language Assembly Strategy Gene Assembly Signed Graph Small Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MD and GR acknowledge support by NSF, grant 0622112. IP acknowledges support by the Academy of Finland, grants 108421 and 203667. NJ has been supported in part by the NSF grants CCF 0523928 and CCF 0726396.


  1. Alhazov A, Petre I, Rogojin V (2008) Solutions to computational problems through gene assembly. J Nat Comput 7(3):385–401MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alhazov A, Petre I, Rogojin V (2009) The parallel complexity of signed graphs: Decidability results and an improved algorithm. Theor Comput Sci 410(24–25):2308–2315MathSciNetCrossRefzbMATHGoogle Scholar
  3. Alhazov A, Li C, Petre I (2010) Computing the graph-based parallel complexity of gene assembly. Theor Comput Sci 411(25):2359–2367MathSciNetCrossRefzbMATHGoogle Scholar
  4. Angeleska A, Jonoska N, Saito M, Landweber LF (2007) RNA-template guided DNA assembly. J Theor Biol 248:706–720CrossRefGoogle Scholar
  5. Angeleska A, Jonoska N, Saito M (2009) DNA recombination through assembly graphs. Discrete Appl Math 157(14):3020–3037MathSciNetCrossRefzbMATHGoogle Scholar
  6. Brijder R (2008) Gene assembly and membrane systems. PhD thesis, University of LeidenGoogle Scholar
  7. Brijder R, Hoogeboom H (2008a) The fibers and range of reduction graphs in ciliates. Acta Inform 45:383–402MathSciNetCrossRefzbMATHGoogle Scholar
  8. Brijder R, Hoogeboom HJ (2008b) Extending the overlap graph for gene assembly in ciliates. In: Martín-Vide C, Otto F, Fernau H (eds) LATA 2008: 2nd international conference on language and automata theory and applications, Tarragona, Spain, March 2008. Lecture notes in computer science, vol 5196. Springer, Berlin Heidelberg, pp 137–148CrossRefGoogle Scholar
  9. Brijder R, Hoogeboom H, Rozenberg G (2006) Reducibility of gene patterns in ciliates using the breakpoint graph. Theor Comput Sci 356:26–45MathSciNetCrossRefzbMATHGoogle Scholar
  10. Brijder R, Hoogeboom H, Muskulus M (2008) Strategies of loop recombination in ciliates. Discr Appl Math 156:1736–1753MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cavalcanti A, Clarke TH, Landweber L (2005) MDS_IES_DB: a database of macronuclear and micronuclear genes in spirotrichous ciliates. Nucl Acids Res 33:396–398CrossRefGoogle Scholar
  12. Chang WJ, Kuo S, Landweber L (2006) A new scrambled gene in the ciliate Uroleptus. Gene 368:72–77CrossRefGoogle Scholar
  13. Daley M, Domaratzki M (2007) On codes defined by bio-operations. Theor Comput Sci 378(1):3–16MathSciNetCrossRefzbMATHGoogle Scholar
  14. Daley M, McQuillan I (2005a) On computational properties of template-guided DNA recombination. In: Carbone A, Pierce N (eds) DNA 11: Proceedings of 11th international meeting on DNA-based computers, London, Ontario, June 2005. Lecture notes in computer science, vol 3892. Springer, Berlin, Heidelberg, pp 27–37Google Scholar
  15. Daley M, McQuillan I (2005b) Template-guided DNA recombination, Theor Comput Sci 330(2):237–250MathSciNetCrossRefzbMATHGoogle Scholar
  16. Daley M, McQuillan I (2006) Useful templates and iterated template-guided DNA recombination in ciliates. Theory Comput Syst 39(5):619–633MathSciNetCrossRefzbMATHGoogle Scholar
  17. Daley M, Ibarra OH, Kari L (2003a) Closure properties and decision questions of some language classes under ciliate bio-operations. Theor Comput Sci 306(1–3): 19–38MathSciNetCrossRefzbMATHGoogle Scholar
  18. Daley M, Ibarra OH, Kari L, McQuillan I, Nakano K (2003b) The ld and dlad bio-operations on formal languages. J Autom Lang Comb 8(3):477–498MathSciNetzbMATHGoogle Scholar
  19. Daley M, Kari L, McQuillan I (2004) Families of languages defined by ciliate bio-operations. Theor Comput Sci 320(1):51–69MathSciNetCrossRefzbMATHGoogle Scholar
  20. Daley M, Domaratzki M, Morris A (2007) Intramolecular template-guided recombination. Int J Found Comput Sci 18(6):1177–1186CrossRefzbMATHGoogle Scholar
  21. Daley M, McQuillan I, Stover N, Landweber LF (2010) A simple topological mechanism for gene descrambling in Stichotrichous ciliates. (under review)Google Scholar
  22. Dassow J, Holzer M (2005) Language families defined by a ciliate bio-operation: hierarchies and decidability problems. Int J Found Comput Sci 16(4):645–662MathSciNetCrossRefzbMATHGoogle Scholar
  23. Dassow J, Vaszil G (2006) Ciliate bio-operations on finite string multisets. In: Ibarra OH, Dang Z (eds) 10th international conference on developments in language theory, Santa Barbara, CA, June 2006. Lecture notes in computer science, vol 4036. Springer, Berlin Heidelberg, pp 168–179CrossRefGoogle Scholar
  24. Dassow J, Mitrana V, Salomaa A (2002) Operations and languages generating devices suggested by the genome evolution. Theor Comput Sci 270(1–2):701–738MathSciNetCrossRefzbMATHGoogle Scholar
  25. Dennis C, Fedorov A, Käs E, Salomé L, Grigoriev M (2004) RuvAB-directed branch migration of individual Holliday junctions is impeded by sequence heterology. EMBO J 23:2413–2422CrossRefGoogle Scholar
  26. Domaratzki M (2007) Equivalence in template-guided recombination, J Nat Comput 7(3):439–449MathSciNetCrossRefGoogle Scholar
  27. Ehrenfeucht A, Rozenberg G (2006) Covers from templates. Int J Found Comput Sci 17(2):475–488MathSciNetCrossRefzbMATHGoogle Scholar
  28. Ehrenfeucht A, Petre I, Prescott DM, Rozenberg G (2000) Universal and simple operations for gene assembly in ciliates. In: Mitrana V, Martin-Vide C (eds) Where mathematics, computer science, linguistics and biology meet. Kluwer, Dordrecht, pp 329–342Google Scholar
  29. Ehrenfeucht A, Petre I, Prescott DM, Rozenberg G (2001a) Circularity and other invariants of gene assembly in ciliates. In: Ito M, Păun G and Yu S (eds) Words, semigroups, and transductions. World Scientific, Singapore, pp 81–97CrossRefGoogle Scholar
  30. Ehrenfeucht A, Prescott DM, Rozenberg G (2001b) Computational aspects of gene (un)scrambling in ciliates. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, Heidelberg, New York, pp 216–256Google Scholar
  31. Ehrenfeucht A, Harju T, Rozenberg G (2002) Gene assembly in ciliates through circular graph decomposition. Theor Comput Sci 281:325–349MathSciNetCrossRefzbMATHGoogle Scholar
  32. Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2003a) Computation in living cells: gene assembly in ciliates. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  33. Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2003b) Formal systems for gene assembly in ciliates. Theor Comput Sci 292:199–219MathSciNetCrossRefzbMATHGoogle Scholar
  34. Ehrenfeucht A, Prescott DM, Rozenberg G (2007) A model for the origin of internal eliminated segments (IESs) and gene rearrangement in stichotrichous ciliates. J Theor Biol 244(1):108–114MathSciNetCrossRefGoogle Scholar
  35. Freund R, Martin-Vide C, Mitrana V (2002) On some operations on strings suggested by gene assembly in ciliates. New Generation Comput 20(3):279–293CrossRefzbMATHGoogle Scholar
  36. Harju T, Petre I, Rozenberg G (2004a) Two models for gene assembly. In: Karhumäki J, Pǎun G, Rozenberg G (eds) Theory is forever. Springer, Berlin, pp 89–101CrossRefGoogle Scholar
  37. Harju T, Petre I, Rozenberg G (2004b) Gene assembly in ciliates: formal frameworks. In: Paun G, Rozenberg G, Salomaa A (eds) Current trends in theoretical computer science (the challenge of the new century). World Scientific, Hackensack, NJ, pp 543–558CrossRefGoogle Scholar
  38. Harju T, Li C, Petre I, Rozenberg G (2006a) Parallelism in gene assembly. Nat Comp 5(2):203–223MathSciNetCrossRefzbMATHGoogle Scholar
  39. Harju T, Petre I, Rogojin V, Rozenberg G (2006b) Simple operations for gene assembly. In: Kari L (ed) Proceedings of 11th international meeting on DNA-based computers, London, Ontario, 2005. Lecture notes in computer science, vol 3892. Springer, Berlin, pp 96–111Google Scholar
  40. Harju T, Petre I, Rozenberg G (2006c) Modelling simple operations for gene assembly. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin, pp 361–376CrossRefGoogle Scholar
  41. Harju T, Li C, Petre I, Rozenberg G (2007) Complexity measures for gene assembly. In: Tuyls K, Westra R, Saeys Y, Now'e A (eds) Proceedings of the knowledge discovery and emergent complexity in bioinformatics workshop, Ghent, Belgium, May 2006. Lecture notes in bioinformaties, vol 4366. Springer, Berlin, Heidelberg, pp 42–60CrossRefGoogle Scholar
  42. Harju T, Li C, Petre I (2008a) Graph theoretic approach to parallel gene assembly. Discr Appl Math 156(18): 3416–3429MathSciNetCrossRefzbMATHGoogle Scholar
  43. Harju T, Li C, Petre I (2008b) Parallel complexity of signed graphs for gene assembly in ciliates. Soft Comput Fusion Found Methodol Appl 12(8):731–737CrossRefzbMATHGoogle Scholar
  44. Harju T, Petre I, Rogojin V, Rozenberg G (2008c) Patterns of simple gene assembly in ciliates, Discr Appl Math 156(14):2581–2597MathSciNetCrossRefzbMATHGoogle Scholar
  45. Hausmann K, Bradbury PC (eds) (1997) Ciliates: cells as organisms. Vch Pub, Deerfield Beach, FLGoogle Scholar
  46. Ilie L, Solis-Oba R (2006) Strategies for DNA self-assembly in ciliates. In: Mao C, Yokomori T (eds) DNA'06: Proceedings of the 12th international meeting on DNA computing, Seoul, Korea, June 2006. Lecture notes in computer science, vol 4287. Springer, Berlin, pp 71–82Google Scholar
  47. Ishdorj T-O, Petre I (2008) Gene assembly models and boolean circuits. Int J Found Comput Sci 19(5):1133–1145MathSciNetCrossRefzbMATHGoogle Scholar
  48. Ishdorj T-O, Petre I, Rogojin V (2007) Computational power of intramolecular gene assembly. Int J Found Comp Sci 18(5):1123–1136MathSciNetCrossRefzbMATHGoogle Scholar
  49. Ishdorj T-O, Loos, R, Petre I (2008) Computational efficiency of intermolecular gene assembly. Fund Informaticae 84(3-4):363–373MathSciNetzbMATHGoogle Scholar
  50. Jahn CL, Klobutcher LA (2000) Genome remodeling in ciliated protozoa. Ann Rev Microbiol 56:489–520CrossRefGoogle Scholar
  51. Kari L, Landweber LF (1999) Computational power of gene rearrangement. In: Winfree E, Gifford DK (eds) Proceedings of DNA based computers, V. Massachusetts Institute of Technology, 1999 American Mathematical Society, Providence, RI, pp 207–216Google Scholar
  52. Kari L, Kari J, Landweber LF (1999) Reversible molecular computation in ciliates. In: Karhumäki J, Maurer H, Pǎun G, Rozenberg G (eds), Jewels are forever. Springer, Berlin, Heidelberg, New York, pp 353–363CrossRefGoogle Scholar
  53. Kauman LH (1999) Virtual knot theory. Eur J Combinatorics 20:663–690CrossRefGoogle Scholar
  54. Krasnow MA, Stasiak A, Spengler SJ, Dean F, Koller T, Cozzarelli NR (1983) Determination of the absolute handedness of knots and catenanes of DNA. Nature 304(5926):559–560CrossRefGoogle Scholar
  55. Landweber LF, Kari L (1999) The evolution of cellular computing: Nature’s solution to a computational problem. In: Kari L, Rubin H, Wood D (eds) Special issue of Biosystems: proceedings of DNA based computers IV, vol 52(1–3). Elsevier, Amsterdam, pp 3–13Google Scholar
  56. Landweber LF, Kari L (2002) Universal molecular computation in ciliates. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, Heidelberg, New York, pp 257–274CrossRefGoogle Scholar
  57. Langille M, Petre I (2006) Simple gene assembly is deterministic. Fund Inf 72:1–12MathSciNetGoogle Scholar
  58. Langille M, Petre I (2007) Sequential vs. parallel complexity in simple gene assembly. Theor Comput Sci 395(1):24–30MathSciNetCrossRefGoogle Scholar
  59. Langille M, Petre I, Rogojin V (2010) Three models for gene assembly in ciliates: a comparison. Comput Sci J Moldova 18(1):1–26MathSciNetGoogle Scholar
  60. Möllenbeck M, Zhou Y, Cavalcanti ARO, Jönsson F, Higgins BP, Chang W-J, Juranek S, Doak TG, Rozenberg G, Lipps HJ, Landweber LF (2008) The pathway to detangle a scrambled gene. PLoS ONE 3(6):2330CrossRefGoogle Scholar
  61. Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF (2008) RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451:153–158CrossRefGoogle Scholar
  62. Petre I (2006) Invariants of gene assembly in stichotrichous ciliates. IT, Oldenbourg Wissenschaftsverlag 48(3):161–167MathSciNetGoogle Scholar
  63. Petre I, Rogojin V (2008) Decision problems for shuffled genes. Info Comput 206(11):1346–1352MathSciNetCrossRefzbMATHGoogle Scholar
  64. Petre I, Skogman S (2006) Gene assembly simulator.
  65. Pevzner P (2000) Computational molecular biology: an algorithmic approach. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  66. Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58(2):233–267Google Scholar
  67. Prescott DM (1999) The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucl Acids Res 27(5):1243–1250CrossRefGoogle Scholar
  68. Prescott DM (2000) Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet 3:191–198CrossRefGoogle Scholar
  69. Prescott DM, DuBois M (1996) Internal eliminated segments (IESs) of oxytrichidae. J Eukariot Microbiol 43:432–441CrossRefGoogle Scholar
  70. Prescott DM, Greslin AF (1992) Scrambled actin I gene in the micronucleus of Oxytricha nova. Dev Gen 13(1):66–74CrossRefGoogle Scholar
  71. Prescott DM, Ehrenfeucht A, Rozenberg G (2001a) Molecular operations for DNA processing in hypotrichous ciliates. Eur J Protistol 37:241–260CrossRefGoogle Scholar
  72. Prescott DM, Ehrenfeucht A, Rozenberg G (2001b) Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates. J Theor Biol 222:323–330MathSciNetCrossRefGoogle Scholar
  73. Setubal J, Meidanis J (1997) Introduction to computational molecular biology. PWS Publishing Company, Boston, MAGoogle Scholar
  74. White JH (1992) Geometry and topology of DNA and DNA-protein interactions. In: Sumners et al. (eds) New scientific applications of geometry and topology, American Mathematical Society, Providence, RI, pp 17–38Google Scholar
  75. Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65CrossRefGoogle Scholar
  76. Yurke B, Turberfield AJ, Mills AP, Simmel FC Jr (2000) A DNA fueled molecular machine made of DNA. Nature 406:605–608CrossRefGoogle Scholar
  77. Zerbib D, Mezard C, George H, West SC (1998) Coordinated actions of RuvABC in Holliday junction processing. J Mol Biol 281(4):621–630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Brijder
    • 1
  • Mark Daley
    • 2
  • Tero Harju
    • 3
  • Nataša Jonoska
    • 4
  • Ion Petre
    • 5
  • Grzegorz Rozenberg
    • 1
    • 6
  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands
  2. 2.Departments of Computer Science and BiologyUniversity of Western OntarioLondonCanada
  3. 3.Department of MathematicsUniversity of TurkuTurkuFinland
  4. 4.Department of MathematicsUniversity of South FloridaTampaUSA
  5. 5.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland
  6. 6.Department of Computer ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations