Skip to main content

Aging of Skin Cells in Culture

  • Reference work entry
Book cover Textbook of Aging Skin

Abstract

The study of age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. In modern biogerontology, the terms “cellular aging,” “cell senescence,” or “replicative senescence” most commonly imply the study of normal diploid cells in culture, which during serial subcultivation undergo a multitude of changes culminating in the permanent cessation of cell division. This process of cellular aging in vitro is generally known as the Hayflick phenomenon, and the limited division potential of normal cells is called the Hayflick limit, in recognition of the observations first reported by Leonard Hayflick in 1961 [1]. With respect to skin aging, three main cell types have been studied extensively with respect to cellular aging in vitro: dermal fibroblasts, epidermal keratinocytes, and melanocytes [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattan SIS. Cellular senescence in vitro. In: Encyclopedia of Life Sciences. 2008. doi: 10.1002/9780470015902.a0002567.pub2.

    Google Scholar 

  2. Norsgaard H, Clark BFC, Rattan SIS. Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol. 1996;31:563–570.

    CAS  PubMed  Google Scholar 

  3. Yaar M, Gilchrest BA. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26:583–591.

    CAS  PubMed  Google Scholar 

  4. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–850.

    CAS  PubMed  Google Scholar 

  5. Berge U, Behrens J, Rattan SIS. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci. 2007;1100:524–529.

    CAS  PubMed  Google Scholar 

  6. Berge U, Kristensen P, Rattan SIS. Kinetin-induced differentiation of normal human keratinocytes undergoing aging in vitro. Ann N Y Acad Sci. 2006;1067:332–336.

    CAS  PubMed  Google Scholar 

  7. Berge U, Kristensen P, Rattan SIS. Hormetic modulation of differentiation of normal human epidermal keratinocytes undergoing replicative senescence in vitro. Exp Gerontol. 2008;43:658–662.

    CAS  PubMed  Google Scholar 

  8. Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Age Dev. 2004;125:827–848.

    CAS  Google Scholar 

  9. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977;267:423–425.

    CAS  PubMed  Google Scholar 

  10. Chen Q, Fischer A, Reagan JD, Yan L-J, Ames BN. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA. 1995;92:4337–4341.

    CAS  PubMed  Google Scholar 

  11. Pinnell SR. Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J Am Acad Dermatol. 2003;48:1–19.

    PubMed  Google Scholar 

  12. Knott A, et al. Deregulation of versican and elastin binding protein in solar elastosis. Biogerontology. 2009;10:181–190.

    CAS  PubMed  Google Scholar 

  13. Holliday R. Understanding Ageing. Cambridge: Cambridge University Press, 1995, pp. 207.

    Google Scholar 

  14. Rattan SIS. Ageing – a biological perspective. Molec Aspects Med. 1995;16:439–508.

    CAS  Google Scholar 

  15. Marcotte R, Wang E. Replicative senescence revisited. J Gerontol Biol Sci. 2002;57A:B257–B269.

    CAS  Google Scholar 

  16. Macieira-Coelho A. Ups and downs of aging studies in vitro: the crooked path of science. Gerontology. 2000;46:55–63.

    CAS  PubMed  Google Scholar 

  17. Lezhava T. Human chromosomes and aging: from 80 to 114 years. New York: Nova Sciience Publishers, 2006.

    Google Scholar 

  18. Stroikin Y, Dalen H, Brunk UT, Terman A. Testing the “garbage” accumulation theory of aging. mitotic acitivity protects cells from death induced by inhibition of autophagy. Biogerontology. 2005;6:39–47.

    CAS  PubMed  Google Scholar 

  19. Borlon C, et al. Expression profiling of senescent-associated genes in human dermis from young and old donors. Proof-of-concept study. Biogerontology. 2008;9:197–208.

    CAS  PubMed  Google Scholar 

  20. Molinari J, Ruszova E, Velebny V, Robert L. Effect of advanced glycation endproducts on gene expression profiles of human dermal fibroblasts. Biogerontology. 2008;9:177–182.

    CAS  PubMed  Google Scholar 

  21. Xie L, Pandey R, Xu B, Tsaprailis G, Chen QM. Genomic and proteomic profiling of oxdiative stress response in human diploid fibroblasts. Biogerontology. 2009;10:125–151.

    CAS  PubMed  Google Scholar 

  22. Krtolica A, Parrinello S, Lockett S, Desprez P-Y, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001;98:12072–12077.

    CAS  PubMed  Google Scholar 

  23. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005;118:485–496.

    CAS  PubMed  Google Scholar 

  24. Campisi J. Senescent cells, tumor suppression, and orgnismal aging: good citizens, bad neighbors. Cell. 2005;120:513–522.

    CAS  PubMed  Google Scholar 

  25. Blagosklonny MV, Campisi J. Cancer and aging: more puzzles, more promises? Cell Cycle. 2008;7:2615–2618.

    CAS  PubMed  Google Scholar 

  26. Dimri GP, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–9367.

    CAS  PubMed  Google Scholar 

  27. Hornsby PJ. Cellular senescence and tissue aging in vivo. J Gerontol Biol Sci. 2002;57A:B251–B256.

    CAS  Google Scholar 

  28. Yang NC, Hu ML. The limitations and validities of senescence associated-β-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40:813–819.

    CAS  PubMed  Google Scholar 

  29. Rubin H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol. 2002;20:675–681.

    CAS  PubMed  Google Scholar 

  30. Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7:250–259.

    CAS  PubMed  Google Scholar 

  31. Youn SW, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2005;35:113–123.

    Google Scholar 

  32. Toussaint O, et al. Stress-induced premature senescence as alternative toxicological method for testing the long-term effects of molecules under development in the industry. Biogerontology. 2000;1:179–183.

    CAS  PubMed  Google Scholar 

  33. Sejersen H, Rattan SIS. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology. 2009;10:203–211.

    CAS  PubMed  Google Scholar 

  34. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    CAS  PubMed  Google Scholar 

  35. Simonsen JL, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20:592–596.

    CAS  PubMed  Google Scholar 

  36. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–233.

    CAS  PubMed  Google Scholar 

  37. Rattan SIS, Clark BFC. Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun. 1994;201:665–672.

    CAS  PubMed  Google Scholar 

  38. Rattan SIS, Sodagam L. Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuven Res. 2005;8:46–57.

    CAS  Google Scholar 

  39. McFarland GA, Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res. 1994;212:167–175.

    CAS  PubMed  Google Scholar 

  40. McFarland GA, Holliday R. Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol. 1999;34:35–45.

    CAS  PubMed  Google Scholar 

  41. Nizard C, et al. Algae extract protection effect on oxidized protein level in human stratum corneum. Ann N Y Acad Sci. 2004;1019:219–222.

    PubMed  Google Scholar 

  42. Glaser DA. Anti-aging products and cosmeceuticals. Facial Plast Surg Clin N Am. 2004;12:363–372.

    Google Scholar 

  43. Rattan SIS. N6-furfuryladenine (kinetin) as a potential anti-aging molecule. J Anti-Aging Med. 2002;5:113–116.

    CAS  Google Scholar 

  44. Chiu PC, Chan CC, Lin HM, Chiu HC. The clinical anti-aging effects of topical kinetin and niacinamide in Asians: a randomized, double-blind, placebo-controlled, split-face comparative trial. J Cosmet Dermatol. 2007;6:247–253.

    Google Scholar 

  45. McCullough JL, Weinstein GD. Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase) to treat photodamaged skin. Cosmet Dermatol. 2002;15:29–32.

    Google Scholar 

  46. Rattan SIS. Hormesis in aging. Ageing Res Rev. 2008;7:63–78.

    PubMed  Google Scholar 

  47. Rattan SIS, Ali RE. Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci. 2007;1100:424–430.

    CAS  PubMed  Google Scholar 

  48. Rattan SIS. Hormetic modulation of aging in human cells. In: Le Bourg E, Rattan SIS (eds) Mild Stress and Healthy Aging: Applying Hormesis in Aging Research and Interventions. Dordrecht: Springer, 2008, pp. 81–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rattan, S.I.S. (2010). Aging of Skin Cells in Culture. In: Farage, M.A., Miller, K.W., Maibach, H.I. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89656-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89656-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89655-5

  • Online ISBN: 978-3-540-89656-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics