ITO Replacements: Carbon Nanotubes

  • Axel SchindlerEmail author


Randomly oriented networks of carbon nanotubes are a promising candidate for ITO replacement. High flexibility and mechanical robustness, as well as vacuum-free deposition from suspensions and almost unlimited material resources enable new applications and lower production costs. This chapter shall give an overview of the main aspects of this new material starting with a general description and deposition techniques. In the following, the mechanical, optical, and electrical properties are discussed. The chapter ends with presented display applications, conclusions, and future prospects.


Sheet Resistance Deposition Technique Plastic Substrate Adhesion Promoter Display Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Active Matrix


Carbon Nanotube Network


Carbon Nanotube


Density of States


Fermi Energy Level


Indium Tin Oxide


Liquid Crystal


Liquid Crystal Display


Metallic Single-Walled Nanotube


Polymer-Dispersed Liquid Crystal


Sheet Resistance [Ω/□]


Reactive Ion Etching


Single-Walled Nanotube


Semiconducting Single-Walled Nanotube


Optical Transmittance [%]


Transparent Electronic Conductor


Twisted Nematic


  1. 1.
    Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng: R: Reports 43:61–102CrossRefGoogle Scholar
  2. 2.
    Hu L, Hecht DS, Grüner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517CrossRefGoogle Scholar
  3. 3.
    Li J, Zhang Z, Zhang S (2007) Percolation in random networks of heterogeneous nanotubes. Appl Phys Lett 91:253127–3CrossRefGoogle Scholar
  4. 4.
    Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145–2147CrossRefGoogle Scholar
  5. 5.
    Skákalová V, Kaiser AB, Woo Y, Roth S (2006) Electronic transport in carbon nanotubes: from individual nanotubes to thin and thick networks. Phys Rev B 74:085403CrossRefGoogle Scholar
  6. 6.
    van de Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing ITO as the transparent electrode. Appl Phys Lett 88:233503CrossRefGoogle Scholar
  7. 7.
    Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129:7758–7759CrossRefGoogle Scholar
  8. 8.
    Zavodchikova MY, Nasibulin AG, Kulmala T, Grigoras K, Anisimov AS, Franssila S, Ermolov V, Kauppinen EI (2008) Novel carbon nanotube network deposition technique for electronic device fabrication. Phys Status Solidi (B) 245:2272–2275CrossRefGoogle Scholar
  9. 9.
    Ng MHA, Hartadi LT, Tan H, Poa CHP (2008) Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 19:205703CrossRefGoogle Scholar
  10. 10.
    Xiong X, Chen C, Ryan P, Busnaina AA, Jung YJ, Dokmeci MR (2009) Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates. Nanotechnology 20:295302CrossRefGoogle Scholar
  11. 11.
    Lima MD, de Andrade MJ, Bergmann MJ, Roth S (2008) Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. J Mater Chem 18:776–779CrossRefGoogle Scholar
  12. 12.
    Wu Z et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRefGoogle Scholar
  13. 13.
    Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647CrossRefGoogle Scholar
  14. 14.
    Zhou Y, Liangbing H, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109–1–3Google Scholar
  15. 15.
    Chhowalla M (2007) Transparent and conducting SWNT thin films for flexible electronics. J Soc Info Display 15:1085–1088CrossRefGoogle Scholar
  16. 16.
    Kämpgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429CrossRefGoogle Scholar
  17. 17.
    Schindler A, Spiessberger S, Fruehauf N, Novak JP, Yaniv Z (2007) Solution-deposited carbon nanotube networks for flexible active matrix displays. In: Proceedings of Asia Display, Shanghai, China, vol 1, pp 882–887Google Scholar
  18. 18.
    Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21:3210–3216CrossRefGoogle Scholar
  19. 19.
    Vaillancourt J et al (2008) All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl Phys Lett 93:243301–243303CrossRefGoogle Scholar
  20. 20.
    Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477CrossRefGoogle Scholar
  21. 21.
    Opatkiewicz JP, LeMieux MC, Bao Z (2010) Influence of electrostatic interactions on spin-assembled single-walled carbon nanotube networks on amine-functionalized surfaces. ACS Nano 4:1167–1177CrossRefGoogle Scholar
  22. 22.
    Schindler A, Spiessberger S, Hergert S, Fruehauf N, Novak JP, Yaniv Z (2008) Suspension-deposited carbon nanotube networks for flexible active matrix displays. J Soc Info Display 16:651–658CrossRefGoogle Scholar
  23. 23.
    Arthur D, Glatkowski P, Wallis P, Trottier M (2004) Flexible transparent circuits from carbon nanotubes. In: SID Digest, Seattle, Washington, vol 35, pp 582–585, Society for Information DisplayGoogle Scholar
  24. 24.
    Park Y, Hu L, Grüner G, Irvin G, Drzaic P (2008) Integration of carbon nanotube transparent electrodes into display applications. SID Digest 37:537–540CrossRefGoogle Scholar
  25. 25.
    Hu L, Yuan W, Brochu P, Grüner G, Pei Q (2009) Highly stretchable, conductive, and transparent nanotube thin films. Appl Phys Lett 94:161108CrossRefGoogle Scholar
  26. 26.
    Williams CD, Robles RO, Zhang M, Li S, Baughman RH, Zakhidov AA (2008) Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Appl Phys Lett 93:183506CrossRefGoogle Scholar
  27. 27.
    de Andrade MJ, Lima MD, Skákalová V, Bergmann CP, Roth S (2007) Electrical properties of transparent carbon nanotube networks prepared through different techniques. Phys Status Solidi RRL 1:178–180CrossRefGoogle Scholar
  28. 28.
    Trottier CM, Glatkowski P, Wallis P, Luo J (2005) Properties and characterization of carbon-nanotube-based transparent conductive coating. J Soc Info Display 13:759–763CrossRefGoogle Scholar
  29. 29.
    Barnes TM, van de Lagemaat J, Levi D, Rumbles G, Coutts TJ, Weeks CL, Britz DA, Levitsky I, Peltola J, Glatkowski P (2007) Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes. Phys Rev B 75:235410CrossRefGoogle Scholar
  30. 30.
    Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRefGoogle Scholar
  31. 31.
    Yan X, Mont FW, Poxson DJ, Schubert MF, Kim JK, Cho J, Schubert EF (2009) Refractive-index-matched indium–tin-oxide electrodes for liquid crystal displays. Japan J Appl Phys 48:120203CrossRefGoogle Scholar
  32. 32.
    Fuhrer MS et al (2000) Crossed nanotube junctions. Science 288:494–497CrossRefGoogle Scholar
  33. 33.
    Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9:3890–3895CrossRefGoogle Scholar
  34. 34.
    Hecht D, Hu L, Grüner G (2006) Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett 89:133112CrossRefGoogle Scholar
  35. 35.
    Parekh BB, Fanchini G, Eda G, Chhowalla M (2007) Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl Phys Lett 90:121913–3CrossRefGoogle Scholar
  36. 36.
    Dettlaff-Weglikowska U et al (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131CrossRefGoogle Scholar
  37. 37.
    Skákalová V, Kaiser AB, Dettlaff-Weglikowska U, Hrncarikova K, Roth S (2005) Effect of chemical treatment on electrical conductivity, infrared absorption, and raman spectra of single-walled carbon nanotubes. J Phys Chem B 109:7174–7181CrossRefGoogle Scholar
  38. 38.
    Barnes TM, Blackburn JL, van de Lagemaat J, Coutts TJ, Heben MJ (2008) Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano 2:1968–1976CrossRefGoogle Scholar
  39. 39.
    Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804CrossRefGoogle Scholar
  40. 40.
    Mowbray DJ, Morgan C, Thygesen KS (2009) Influence of o2 and n2 on the conductivity of carbon nanotube networks. Phys Rev B 79:195431CrossRefGoogle Scholar
  41. 41.
    Blackburn JL, Barnes TM, Beard MC, Kim Y, Tenent RC, McDonald TJ, To B, Coutts TJ, Heben MJ (2008) Transparent conductive Single-Walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2:1266–1274CrossRefGoogle Scholar
  42. 42.
    Jackson R, Domercq B, Jain R, Kippelen B, Graham S (2008) Stability of doped transparent carbon nanotube electrodes. Adv Funct Mater 18:2548–2554CrossRefGoogle Scholar
  43. 43.
    Schindler A, Schau P, Fruehauf N (2009) Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. J Soc Info Display 17:853–860CrossRefGoogle Scholar
  44. 44.
    Jackson R, Graham S (2009) Specific contact resistance at metal/carbon nanotube interfaces. Appl Phys Lett 94: 012109-3Google Scholar
  45. 45.
    Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo I, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability. Appl Phys Lett 95:264103CrossRefGoogle Scholar
  46. 46.
    Behnam A, Choi Y, Noriega L, Wu Z, Kravchenko I, Rinzler AG, Ural A (2007) Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. J Vaccum Sci Technol B 25:348–354CrossRefGoogle Scholar
  47. 47.
    Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500CrossRefGoogle Scholar
  48. 48.
    Sherman R, Hirt D, Vane R (1994) Surface cleaning with the carbon dioxide snow jet. J Vacccum Sci Technol A 12:1876–1881CrossRefGoogle Scholar
  49. 49.
    Glatkowski P (2003) Carbon nanotube based transparent conductive coatings. In: International SAMPE symposium and exhibition, Long Beach, California, US, pp 2146–2152Google Scholar
  50. 50.
    Chan-Yu-King R, Roussel F (2007) Transparent carbon nanotube-based driving electrodes for liquid crystal dispersion display devices. Appl Phys A 86:159–163CrossRefGoogle Scholar
  51. 51.
    Schindler A, Spiessberger S, Fruehauf N, Novak JP, Yaniv Z (2007) Solution-deposited carbon nanotube networks for flexible active matrix displays. In: Asia Display, Shanghai, China, Mar vol 1, pp 882–887Google Scholar
  52. 52.
    Schindler A, Pross A, Baur H, Fruehauf N (2008) AMLCD with carbon-nanotube pixel electrodes. In: SID Digest, Los Angeles, pp 947–950Google Scholar
  53. 53.
    Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88: 183104/1–3CrossRefGoogle Scholar
  54. 54.
    Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRefGoogle Scholar
  55. 55.
    Yu Z, Hu L, Liu Z, Sun M, Wang M, Grüner G, Pei Q (2009) Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Appl Phys Lett 95:203304CrossRefGoogle Scholar
  56. 56.
    Liu D, Fina M, Guo J, Chen X, Liu G, Johnson SG, Mao SS (2009) Organic light-emitting diodes with carbon nanotube cathode-organic interface layer. Appl Phys Lett 94:013110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for System Theory and Display TechnologyUniversity of StuttgartStuttgartGermany

Personalised recommendations