Advertisement

Roseobacter

  • A. Buchan
  • J. M. González

Abstract:

Members of the Roseobacter lineage of bacteria are prevalent in diverse marine environments where they carry out critical biogeochemical processes. Recent reports, based primarily on culture-independent studies and reviewed here, provide compelling evidence that members of this abundant lineage are involved in hydrocarbon degradation in natural systems. To determine whether cultured representatives possess similar catabolic capabilities, 24 representative Roseobacter genome sequences were searched for genes sharing homology with those known to be involved in the degradation of hydrocarbons and related compounds. Five distinct pathways for the aerobic degradation of aromatic compounds were identified in the genome collection, as were genes encoding alkane hydroxylases and uncharacterized ring-cleaving and -hydroxylating dioxygenases. Taken together, these findings suggest Roseobacters, a group historically overlooked with regard to this physiology, may play important roles in the degradation of hydrocarbons at both naturally occurring and elevated levels in marine environments.

Keywords

Hydrocarbon Degradation Alkane Hydroxylase Roseobacter Clade Meta Cleavage Pathway Aromatic Compound Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams MA, Singh VK, Keller BO, Jia Z (2006) Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157:H7. Mol Microbiol 61: 1469–1484.PubMedCrossRefGoogle Scholar
  2. Biers EJ, Wang K, Pennington C, Belas R, Chen F, Moran MA (2008) Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl Environ Microbiol 74: 2933–2939.PubMedCrossRefGoogle Scholar
  3. Brakstad OG, Lødeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49: 94–103.PubMedCrossRefGoogle Scholar
  4. Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189: 531–539.PubMedCrossRefGoogle Scholar
  5. Brito EMS, Guyoneaud R, Goñi-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157: 752–762.Google Scholar
  6. Buchan A, González JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71: 5665–5677.PubMedCrossRefGoogle Scholar
  7. Buchan A, Neidle EL, Moran MA (2004) Diverse organization of genes of the β-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol 70: 1658–1668.PubMedCrossRefGoogle Scholar
  8. Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38: 47–84.PubMedCrossRefGoogle Scholar
  9. Chang Y-J, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC (2000) Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods 40: 19–31.PubMedCrossRefGoogle Scholar
  10. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9: 177–186.PubMedCrossRefGoogle Scholar
  11. Ferrández A, Miñambres B, García B, Olivera ER, Luengo JM, García JL, Díaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. J Biol Chem 273: 25974–25986.PubMedCrossRefGoogle Scholar
  12. Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33: 533–551.CrossRefGoogle Scholar
  13. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5: 746–753.PubMedCrossRefGoogle Scholar
  14. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50: 553–590.CrossRefGoogle Scholar
  15. Hernandez-Raquet G, Budzinski H, Caumette P, Dabert P, Le Ménach K (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58: 550–562.PubMedCrossRefGoogle Scholar
  16. Katayama Y, Oura T, Iizuka M, Orita I, Cho KJ, Chung IY, Okada M (2003) Effects of spilled oil on microbial communities in a tidal flat. Mar Poll Bull 47: 85–90.CrossRefGoogle Scholar
  17. Liu D, Zhu T, Fan L, Quan J, Guo H, Ni J (2007) Identification of a novel gentisate 1,2-dioxygenase from Silicibacter pomeroyi. Biotech Lett 29: 1529–1535.CrossRefGoogle Scholar
  18. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9: 165–176.PubMedCrossRefGoogle Scholar
  19. Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73: 4559–4569.PubMedCrossRefGoogle Scholar
  20. Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910–913.PubMedCrossRefGoogle Scholar
  21. Noda Y, Nishikawa S, Shiozuka K, Kadokura H, Nakajima H, Yoda K, Katayama Y, Morohoshi N, Haraguichi T, Yamasaki M (1990) Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172: 2704–2709.PubMedGoogle Scholar
  22. Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68: 6300–6309.PubMedCrossRefGoogle Scholar
  23. Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59: 342–355.PubMedGoogle Scholar
  24. Pradella S, Allgaier M, Hoch C, Päuker O, Stackebrandt E, Wagner-Döbler I (2004) Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70: 3360–3369.PubMedCrossRefGoogle Scholar
  25. Roper DI, Fawcett T, Cooper RA (1993) The Escherichia coli C homoprotocatechuate degradative operon: hpc gene order, direction of transcription and control of expression. Mol Gen Genet 237: 241–250.PubMedCrossRefGoogle Scholar
  26. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189: 683–690.PubMedCrossRefGoogle Scholar
  27. van Beilan JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. App Microbiol Biotech 74: 13–21.CrossRefGoogle Scholar
  28. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67: 503–549.PubMedCrossRefGoogle Scholar
  29. Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Ann Rev Microbiol 60: 255–280.CrossRefGoogle Scholar
  30. Ying J-Y, Wang B-J, Xin D, Yang S-S, Liu S-J, Liu Z-P (2007) Wenxina marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 57: 1711–1716.PubMedCrossRefGoogle Scholar
  31. Zaar A, Gescher J, Eisenreich W, Bacher A, Fuchs G (2004) New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54: 223–238.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Buchan
    • 1
  • J. M. González
    • 2
  1. 1.Department of MicrobiologyUniversity of TennesseeKnoxville TNUSA
  2. 2.Department of MicrobiologyUniversity of La LagunaTenerifeSpain

Personalised recommendations