A Genomic View of the Catabolism of Aromatic Compounds in Pseudomonas

  • J. I. Jiménez
  • J. Nogales
  • J. L. García
  • E. Díaz


The genetic, and the more recent genomic, proteomic, and metabolomic, approaches that have been undertaken to study the catabolism of aromatic compounds in different Pseudomonas strains have contributed significantly to the acceleration and completion of our understanding on different aspects of the physiology, ecology, biochemistry, and regulatory mechanisms underlying a secondary metabolism that allows the use of this highly abundant carbon source by some bacteria. Comparative genomics suggests that the overall organization of catabolic clusters is conserved across the Pseudomonas genus. However, species-specific and strain-specific variations account for differences in gene arrangements, substrate specificities, and regulatory elements. Moreover, genomic analyses point to the existence of parologous genes likely involved in the degradation of aromatic compounds, suggesting that our current knowledge about the degradative potential of Pseudomonas is still far from complete. On the other hand, many aromatic compounds, e.g., hydrocarbons and phenolic compounds, simultaneously serve as potential nutrients to be metabolized by bacteria but also as cellular stressors. The transcriptomic and proteomic approaches carried out with some Pseudomonas strains provide some light on the biodegradation versus stress dilemma. The increased use of the “omic” techniques, together with the genome-scale metabolic reconstructions developed for some Pseudomonas strains, will certainly contribute significantly to unravel the intricate regulatory and metabolic networks that govern the biodegradation of aromatic compounds, as well as their distribution and ecophysiological relevance. All the basic knowledge generated so far about the metabolism of aromatic compounds in Pseudomonas paves the way for a wealth of biotechnological applications, e.g., bioremediation, biotransformations, biosensors, etc., and it is of great potential in Synthetic Biology. Therefore, Pseudomonas becomes a paradigmatic bacterial genus both for increasing basic knowledge and for applied research within the field of aromatic compounds degradation.


Aromatic Compound Catabolic Gene Central Intermediate Peripheral Pathway Extradiol Dioxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in our laboratory was supported by grants from the Comisión Interministerial de Ciencia y Tecnología (GEN2006-27750-C5-3-E, BIO2006-05957, BFU2006-15214-CO3-01, MMA-PR21/06-039/2006/3-11.2, and CSD2007-00005) and Comunidad Autónoma de Madrid (P-AMB-259-0505).


  1. Agulló L, Cámara B, Martínez P, Latorre V, Seeger M (2007) Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. FEMS Microbiol Lett 267: 167–175.PubMedCrossRefGoogle Scholar
  2. Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003) Construction of a bacterial biosensor for styrene. J Biotechnol 102: 301–306.PubMedGoogle Scholar
  3. Arias S, Olivera ER, Arcos M, Naharro G, Luengo JM (2008) Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10: 413–432.PubMedCrossRefGoogle Scholar
  4. Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, Díaz E, Miñambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186: 5062–5077.PubMedCrossRefGoogle Scholar
  5. Blasco R, Ramos JL, Wittich RM (2008) Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing. Environ Microbiol 10: 1591–1600.PubMedCrossRefGoogle Scholar
  6. Bundy BM, Campbell AL, Neidle EL (1998) Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180: 4466–4474.PubMedGoogle Scholar
  7. Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutant biosensors. In: Microbial Biodegradation. Genomics and Molecular Biology. Díaz E (ed.). Norkfolk, UK: Caister Academic Press, 97–143.Google Scholar
  8. Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3: 105–118.PubMedCrossRefGoogle Scholar
  9. Choi EN, Cho MC, Kim Y, Kim C-K, Lee K (2003) Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149: 795–805.PubMedCrossRefGoogle Scholar
  10. Cuskey SM, Olsen RH (1988) Catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO1 via meta cleavage of homoprotocatechuic acid. J Bacteriol 170: 393–399.PubMedGoogle Scholar
  11. Dejonghe W, Goris J, El Fantroussi S, Hofte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66: 3297–3304.PubMedCrossRefGoogle Scholar
  12. De las Heras A, Carreño CA, De Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10: 3305–3316.Google Scholar
  13. del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189: 6602–6610.PubMedCrossRefGoogle Scholar
  14. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281: 11981–11991.PubMedCrossRefGoogle Scholar
  15. dos Santos VAPM, Heim S, Moore ERB, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6: 1264–1286.PubMedCrossRefGoogle Scholar
  16. Dunaway-Mariano D, Babbitt PC (1994) On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation 5: 259–276.PubMedCrossRefGoogle Scholar
  17. Duque E, Rodríguez-Herva JJ, de la Torre J, Domínguez-Cuevas P, Muñoz-Rojas J, Ramos JL (2007) The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. J Bacteriol 189: 207–219.PubMedCrossRefGoogle Scholar
  18. Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179: 3171–3180.PubMedGoogle Scholar
  19. Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN (1997) Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotech 15: 378–382.CrossRefGoogle Scholar
  20. Farrow JM 3rd, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189: 3425–3433.PubMedCrossRefGoogle Scholar
  21. Gaillard M, Vallaeys T, Vorhölter FJ, Minoia M, Werlen C, Sentchilo V, Pühler A, van der Meer JR (2006) The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188: 1999–2013.PubMedCrossRefGoogle Scholar
  22. Galán B, Díaz E, García JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2: 687–694.PubMedCrossRefGoogle Scholar
  23. Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17: 34–42.PubMedCrossRefGoogle Scholar
  24. Gao X, Tan CL, Yeo CC, Poh CL (2005) Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867. J Bacteriol 187: 7696–7702.PubMedCrossRefGoogle Scholar
  25. García B, Olivera ER, Miñambres B, Fernández-Valverde, M, Canedo LM, Prieto MA, García JL, Martínez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274: 29228–29241.PubMedCrossRefGoogle Scholar
  26. Gescher J, Ismail W, Ölgeschläger E, Eisenreich W, Wörth J, Fuchs G (2006) Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J Bacteriol 188: 2919–2927.PubMedCrossRefGoogle Scholar
  27. Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Metal Ions in Biological Systems, vol. 28. Sigel H, Sigel A (eds.). New York: Marcel Dekker Inc., 99–156.Google Scholar
  28. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50: 553–590.CrossRefGoogle Scholar
  29. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PCK (2007) Characterization of a Pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189: 3502–3514.PubMedCrossRefGoogle Scholar
  30. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385–407.PubMedCrossRefGoogle Scholar
  31. Jiménez JI, Canales Á, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: The nic cluster from Pseudomonas putida KT2440. Proc Nat Acad Sci USA 105: 11329–11334.PubMedCrossRefGoogle Scholar
  32. Jiménez JI, Miñambres B, García JL, Díaz E (2004) Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In: Pseudomonas, vol. 3. Ramos JL (ed.). New York: Kluwer Academic, 425–462.Google Scholar
  33. Kallastu A, Hörak R, Kivisaar M (1998) Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. J Bacteriol 180: 5306–5312.PubMedGoogle Scholar
  34. Kim YH, Cho K, Yun S-H, Kim JY, Kwon K-H, Yoo JS, Kim SI (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6: 1301–1318.PubMedCrossRefGoogle Scholar
  35. Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hörak R (2006) The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 188: 8109–8117.PubMedCrossRefGoogle Scholar
  36. Klemba M, Jakobs B, Wittich R-M, Pieper D (2000) Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66: 3255–3261.PubMedCrossRefGoogle Scholar
  37. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microb Interact 14: 1197–1205.CrossRefGoogle Scholar
  38. Kurbatov L, Albrecht D, Herrmann H, Petruschka L (2006) Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol 8: 466–478.PubMedCrossRefGoogle Scholar
  39. Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Lett 227: 219–227.CrossRefGoogle Scholar
  40. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479.PubMedCrossRefGoogle Scholar
  41. Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927.PubMedGoogle Scholar
  42. Lorenzo P, Alonso S, Velasco A, Díaz E, García JL, Perera J (2004) Design of catabolic cassettes for styrene biodegradation. Antonie van Leeuwenhoek 84: 17–24.CrossRefGoogle Scholar
  43. Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39: 1434–1442.PubMedCrossRefGoogle Scholar
  44. Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6: 251–260.PubMedCrossRefGoogle Scholar
  45. Maruyama K, Shibayama T, Ichikawa A, Sakou Y, Yamada S, Sugisaki H (2004) Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem 68: 1434–1441.PubMedCrossRefGoogle Scholar
  46. Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189: 6849–6860.PubMedCrossRefGoogle Scholar
  47. Mohn WW, Garmendia J, Galvao TC, de Lorenzo V (2006) Surveying biotransformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environ Microbiol 8: 546–555.PubMedCrossRefGoogle Scholar
  48. Moonen MJH, Kamerbeek NM, Westphal AH, Boeren SA, Janssen DB, Fraaije MW, van Berkel WJH (2008a) Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 190: 5190–5198.PubMedCrossRefGoogle Scholar
  49. Moonen MJH, Synowsky SA, van den Berg WAM, Westphal AH, Heck AJR, van den Heuvel RHH, Fraaije MW, van Berkel WJH (2008b) Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 190: 5199–5209.PubMedCrossRefGoogle Scholar
  50. Munthali MT, Timmis KN, Díaz E (1996) Use of colicin E3 for biological containment of microorganisms. Appl Environ Microbiol 62: 1805–1807.PubMedGoogle Scholar
  51. Nogales J, Canales A, Jiménez-Barbero J, García JL, Díaz E (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem 280:35382–35390.PubMedCrossRefGoogle Scholar
  52. Nogales J, Macchi R, Franchi F, Barzaghi D, Fernández C, García JL, Bertoni G, Díaz E (2007) Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology 153: 357–365.PubMedCrossRefGoogle Scholar
  53. Nogales J, Palsson BO, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol doi: 10.1186/1752–0509–2–79.Google Scholar
  54. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VAP, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190: 2790–2803.PubMedCrossRefGoogle Scholar
  55. O'Leary ND, O'Connor KE, Ward P, Goff M, Dobson ADW (2005) Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71: 4380–4387.PubMedCrossRefGoogle Scholar
  56. Olivera ER, Carnicero D, García B, Miñambres B, Moreno MA, Cañedo L, DiRusso CC, Naharro G, Luengo JM (2001) Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39: 863–874.PubMedCrossRefGoogle Scholar
  57. Olivera ER, Miñambres B, García B, Muñiz C, Moreno MA, Ferrández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424.PubMedCrossRefGoogle Scholar
  58. Ouyang SP, Liu Q, Sun SY, Chen JC, Chen GQ (2007) Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols. J Biotechnol 132: 246–250.PubMedCrossRefGoogle Scholar
  59. Parales RE, Ju K-S, Rollefson JB, Ditty JL (2008) Bioavailability, chemotaxis, and transport of organic pollutants. In: Microbial Biodegradation. Genomics and Molecular Biology. Díaz E (ed.). Norkfolk, UK: Caister Academic, 145–187.Google Scholar
  60. Park SH, Oh KH, Kim CK (2001) Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr Microbiol 43: 176–181.PubMedCrossRefGoogle Scholar
  61. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PCK (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5: 1309–1327.PubMedCrossRefGoogle Scholar
  62. Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5: 219–236.PubMedCrossRefGoogle Scholar
  63. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56: 296–314.PubMedCrossRefGoogle Scholar
  64. Prieto MA, de Eugenio LI, Galán B, Luengo JM, Witholt B (2007) Synthesis and degradation of polyhydroxyalkanoates. In: Pseudomonas, vol. 5. Ramos JL, Filloux A (eds.). The Netherlands: Springer, 397–428.CrossRefGoogle Scholar
  65. Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VAP (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4(10): e1000210. doi:10.1371/journal.pcbi.1000210.PubMedCrossRefGoogle Scholar
  66. Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69: 385–400.PubMedCrossRefGoogle Scholar
  67. Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52: 287–331.PubMedCrossRefGoogle Scholar
  68. Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by napthalene dioxygenase from Pseudomonas sp. strain NCIB9816. J Ind Microbiol 17: 438–457.Google Scholar
  69. Rodríguez-Herva JJ, García V, Hurtado A, Segura A, Ramos JL (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9: 1550–1561.PubMedCrossRefGoogle Scholar
  70. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70: 3637–3643.PubMedCrossRefGoogle Scholar
  71. Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67: 2649–2656.PubMedCrossRefGoogle Scholar
  72. Rosenberg SL, Hegeman GD (1971) Genetics of the mandelate pathway in Pseudomonas aeruginosa. J Bacteriol 108: 1257–1269.PubMedGoogle Scholar
  73. Santos PM, Benndorf D, Sá-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4: 2640–2652.PubMedCrossRefGoogle Scholar
  74. Santos PM, Roma V, Benndorf D, von Bergen M, Harms H, Sá-Correia I (2007) Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics. OMICS 11: 233–251.PubMedCrossRefGoogle Scholar
  75. Santos PM, Sá-Correia I (2007) Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol 131: 371–378.PubMedCrossRefGoogle Scholar
  76. Sarand I, Österberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10: 1320–1334.PubMedCrossRefGoogle Scholar
  77. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos, JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187: 5937–5945.PubMedCrossRefGoogle Scholar
  78. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201–222.PubMedGoogle Scholar
  79. Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189: 6665–6675.PubMedCrossRefGoogle Scholar
  80. Song B, Ward BB (2005) Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71: 2036–2045.PubMedCrossRefGoogle Scholar
  81. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49: 523–555.PubMedCrossRefGoogle Scholar
  82. Taira K, Hirose J, Hayashida S, Furukawa K (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267: 4844–4853.PubMedGoogle Scholar
  83. Takenaka S, Murakami S, Kim YJ, Aoki K (2000) Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch Microbiol 174: 265–272.PubMedCrossRefGoogle Scholar
  84. Tang H, Wang S, Ma L, Meng X, Deng Z, Zhang D, Ma C, Xu P (2008) A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16. Appl Environ Microbiol 74: 1567–1574.PubMedCrossRefGoogle Scholar
  85. Trautwein K, Kuhner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74: 2267–2274.PubMedCrossRefGoogle Scholar
  86. Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM (1999) Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 65: 2151–2162.PubMedGoogle Scholar
  87. Van der Meer JR (2008) A genomic view on the evolution of catabolic pathways and bacterial adaptation to xenobiotic compounds. In: Microbial Biodegradation. Genomics and Molecular Biology. Díaz E (ed.). Norkfolk, UK: Caister Academic, 219–267.Google Scholar
  88. Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41: 1378–1383.PubMedCrossRefGoogle Scholar
  89. Velázquez F, de Lorenzo V, Valls M (2006) The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 8: 591–602.PubMedCrossRefGoogle Scholar
  90. Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J Aguirre de Cárcer D, Oruezábal RI, Bolaños L, Macek T, Karlson U, Dowling DN, Martín M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71: 2687–2694.PubMedCrossRefGoogle Scholar
  91. Volkers RJM, de Jong AL, Hulst AG, van Baar BLM, de Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8: 1674–1679.PubMedCrossRefGoogle Scholar
  92. Wackett LP (2003) Pseudomonas putida, a versatile biocatalyst. Nat Biotech 21: 136–138.CrossRefGoogle Scholar
  93. Werlen C, Jaspers MCM, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70: 43–51.PubMedCrossRefGoogle Scholar
  94. Wierckx NJP, Ballerstedt H, de Bont JAM, de Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190: 2822–2830.PubMedCrossRefGoogle Scholar
  95. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5: 195–217.PubMedCrossRefGoogle Scholar
  96. Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Nat Acad Sci USA 105: 7564–7569.PubMedCrossRefGoogle Scholar
  97. You IS, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3’-flanking region. Biochemistry 30:1635–1641.PubMedCrossRefGoogle Scholar
  98. Young DM, Parke D, Ornston LN (2005) Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol 59: 519–551.PubMedCrossRefGoogle Scholar
  99. Zhao B, Yeo CC, Lee CC, Geng A, Chew FT, Poh CL (2004) Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB 9867. Proteomics 4: 2028–2036.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. I. Jiménez
    • 1
  • J. Nogales
    • 2
  • J. L. García
    • 2
  • E. Díaz
    • 2
  1. 1.Department of Microbial BiotechnologyCentro Nacional de Biotecnología-Consejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Department of Molecular MicrobiologyCentro de Investigaciones Biológicas-Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations