Advertisement

Production of Wax Esters by Bacteria

  • J.-F. Rontani

Abstract:

During cultivation under nitrogen-limited conditions, some prokaryotes are able to accumulate large amounts of wax esters as inclusion bodies in their cytoplasm. These lipids act as storage compounds for energy and carbon during starvation. The present review focuses on the formation pathways of these compounds during the bacterial metabolism of various substrates (hydrocarbons, alkanols, and fatty acids). A particular attention is given to the formation of isoprenoid wax esters. As a conclusion, the potential applications of these compounds are discussed.

Keywords

Phytenic Acid Formation Pathway Sperm Whale Acinetobacter Calcoaceticus Aldehyde Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez HM, Pucci OH, Steinbüchel A (1997) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47: 132–139.CrossRefGoogle Scholar
  2. Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5: 579–583.PubMedCrossRefGoogle Scholar
  3. Cranwell PA (1986) Esters of acyclic and polycyclic isoprenoid alcohols: Biochemical markers in lacustrine sediments. Org Geochem 10: 891–896.CrossRefGoogle Scholar
  4. Dewitt S, Ervin JL, Howesorchison D, Dalietos D, Neidleman SL, Geigert J (1982) Saturated and unsaturated wax esters produced by Acinetobacter sp. HO1-N grown on C16-C20 n-alkanes. J Am Oil Chem Soc 59: 69–74.CrossRefGoogle Scholar
  5. Fixter LM, Nagi MN, McCormack JG, Fewson CA (1986) Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. J Gen Microbiol 132: 3147–3157.Google Scholar
  6. Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: Identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189: 3804–3812.PubMedCrossRefGoogle Scholar
  7. Ishige T, Tani A, Sakai Y, Kato N (2000) Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. Strain M-1. Appl Environ Microbiol 66: 3481–3486.PubMedCrossRefGoogle Scholar
  8. Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production in bacteria. Curr Opin Microbiol 6: 244–250.PubMedCrossRefGoogle Scholar
  9. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 287: 8075–8082.Google Scholar
  10. Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax esters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J lipid Sci Technol 105: 578–584.CrossRefGoogle Scholar
  11. Kaneshiro T, Nakamura LK, Nicholson JJ, Bagby MO (1996) Oleyl oleate and homologous wax esters synthesized coordinately from oleic acid by Acinetobacter and Coryneform strains. Curr Microbiol 32: 336–342.PubMedCrossRefGoogle Scholar
  12. Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of lipids of Acinetobacter species grown on hexadecane. J. Bacteriol 121: 250–258.PubMedGoogle Scholar
  13. Rontani JF, Bonin P, Volkman JK (1999a) Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl Environ Microbiol 65: 221–230.PubMedGoogle Scholar
  14. Rontani JF, Bonin P, Volkman JK (1999b) Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Appl Environ Microbiol 65: 5484–5492.PubMedGoogle Scholar
  15. Rontani JF, Bonin P (2000) Aerobic bacterial metabolism of phytol in seawater: Effect of particle association on an abiotic intermediate step and its biogeochemical consequences. Org Geochem 31: 489–496.CrossRefGoogle Scholar
  16. Rontani JF, Mouzdahir A, Michotey V, Caumette P, Bonin P (2003) production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 69: 4167–4176.CrossRefGoogle Scholar
  17. Silva RA, Grossi V, Alvarez HM (2007) biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272: 220–228.PubMedCrossRefGoogle Scholar
  18. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: Recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bacteriol 187: 3607–3619.PubMedCrossRefGoogle Scholar
  19. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid body formation in bacteria: How bacteria fatten up. Mol Microbiol 55: 750–763.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J.-F. Rontani
    • 1
  1. 1.Laboratoire de Microbiologie, de Géochimie et d’Ecologie Marines (LMGEM-UMR 6117)Centre d’Océanologie de Marseille – Campus de LuminyMarseilleFrance

Personalised recommendations