Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis

  • S. J. Green
  • M. B. Leigh
  • J. D. Neufeld
Reference work entry


Denaturing gradient gel electrophoresis (DGGE) is a commonly used molecular technique for rapid fingerprint analysis of microbial community composition, diversity, and dynamics. The method is rapid and affordable, allowing multiple samples to be processed simultaneously. This protocol provides a background to the theory and progress in DGGE techniques, and offers a detailed step-by-step procedure for laboratories employing DGGE for the analysis of bacterial populations from environmental samples. Potential sources of bias are highlighted in addition to a detailed troubleshooting section that helps to overcome common problems associated with DGGE analyses. The protocol outlines steps for preparing gel solutions, pouring gels, operating the DGGE apparatus, and excising fingerprint bands of interest for sequencing. All the required reagents and supplies are listed, as are the sequences of the most commonly used PCR primer sets for DGGE of bacterial 16S rRNA gene amplicons. A comparison of the three major providers of DGGE apparatuses is also included.


Microbial Community Analysis Buffer Tank Plate Assembly Polyacrylamide Solution Band Excision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MBL was supported by NSF Award 0626544 and JDN acknowledges funding from an NSERC Discovery Grant.


  1. Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74: 2717–2727.PubMedCrossRefGoogle Scholar
  2. Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66: 499–508.PubMedCrossRefGoogle Scholar
  3. Crick FHC, Watson JD (1954) The complementary structure of deoxyribonucleic acid. Proc R Soc A 223: 80–96.CrossRefGoogle Scholar
  4. Cytryn E, van Rijn J, Schramm A, Gieseke A, de Beer D, Minz D (2005) Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system. Appl Environ Microbiol 71: 6134–6141.PubMedCrossRefGoogle Scholar
  5. Dar SA, Kuenen JG, Muyzer G (2005) Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl Environ Microbiol 71: 2325–2330.PubMedCrossRefGoogle Scholar
  6. Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67: 2942–2951.PubMedCrossRefGoogle Scholar
  7. El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65: 982–988.PubMedGoogle Scholar
  8. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62: 340–346.PubMedGoogle Scholar
  9. Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in 2-dimensional gel-electrophoresis. Cell 16: 191–200.PubMedCrossRefGoogle Scholar
  10. Fischer SG, Lerman LS (1980) Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci USA 77: 4420–4424.PubMedCrossRefGoogle Scholar
  11. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels – correspondence with melting theory. Proc Natl Acad Sci USA 80: 1579–1583.PubMedCrossRefGoogle Scholar
  12. Geets J, Borrernans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66: 194–205.PubMedCrossRefGoogle Scholar
  13. Green SJ (2006). A guide to denaturing gradient gel electrophoresis.
  14. Green SJ, Michel FC, Hadar Y, Minz D (2007) Contrasting patterns of seed and root colonization by bacteria from the genus Chryseobacterium and from the family Oxalobacteraceae. ISME J 1: 291–299.PubMedGoogle Scholar
  15. Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W et al. (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 55: 262–273.PubMedCrossRefGoogle Scholar
  16. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63: 3233–3241.PubMedGoogle Scholar
  17. Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol 25: 267–274.PubMedCrossRefGoogle Scholar
  18. Jones CM, Thies JE (2007) Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Methods 69: 256–267.PubMedCrossRefGoogle Scholar
  19. Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, mcmurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71: 6353–6359.PubMedCrossRefGoogle Scholar
  20. Morimoto S, Togami K, Ogawa N, Hasebe A, Fujii T (2005) Analysis of a bacterial community in 3-chlorobenzoate-contaminated soil by PCR-DGGE targeting the 16S rRNA gene and benzoate 1,2-dioxygenase gene (benA). Microbes Environ 20: 151–159.CrossRefGoogle Scholar
  21. Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2: 379–392.PubMedCrossRefGoogle Scholar
  22. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.PubMedGoogle Scholar
  23. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular microbial ecology manual. ADL Akkermans, JDv Elsas, FJd Bruijn, (eds.). Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 1–27.Google Scholar
  24. Myers R, Fischer S, Lerman L, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13: 3131–3145.PubMedCrossRefGoogle Scholar
  25. Neefs J-M, Van de Peer Y, Rijk PD, Chapelle S, De Wachter R (1993) Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21: 3025–3049.PubMedCrossRefGoogle Scholar
  26. Neufeld JD, Mohn WW (2005) Fluorophore-labeled primers improve the sensitivity, versatility and normalization of denaturing gradient gel electrophoresis (DGGE). Appl Environ Microbiol 71: 4893–4896.PubMedCrossRefGoogle Scholar
  27. Neufeld JD, Mohn WW, de Lorenzo V (2006) Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol 8: 126–140.PubMedCrossRefGoogle Scholar
  28. Neufeld JD, Yu Z, Lam W, Mohn WW (2004) Serial analysis of ribosomal sequence tags (SARST): a high-throughput method for profiling complex microbial communities. Environ Microbiol 6: 131–144.PubMedCrossRefGoogle Scholar
  29. Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC (2007) DNA stable-isotope probing. Nat Protoc 2: 860–866.PubMedCrossRefGoogle Scholar
  30. Nikolausz M, Sipos R, Revesz S, Szekely A, Marialigeti K (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol Lett 244: 385–390.PubMedCrossRefGoogle Scholar
  31. Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67: 3426–3433.PubMedCrossRefGoogle Scholar
  32. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646–649.PubMedCrossRefGoogle Scholar
  33. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD et al. (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1: 283–290.PubMedGoogle Scholar
  34. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Amheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.PubMedCrossRefGoogle Scholar
  35. Sanchez O, Gasol JM, Massana R, Mas J, Pedros-Alio C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73: 5962–5967.PubMedCrossRefGoogle Scholar
  36. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236.PubMedCrossRefGoogle Scholar
  37. Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49: 401–417.PubMedCrossRefGoogle Scholar
  38. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927–936.CrossRefGoogle Scholar
  39. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) A naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267.PubMedCrossRefGoogle Scholar
  40. Wilms R, Sass H, Kopke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59: 611–621.PubMedCrossRefGoogle Scholar
  41. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271.PubMedGoogle Scholar
  42. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70: 4800–4806.PubMedCrossRefGoogle Scholar
  43. Yu Z, Garcia-Gonzalez R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74: 889–893.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. J. Green
    • 1
  • M. B. Leigh
    • 2
  • J. D. Neufeld
    • 3
  1. 1.Department of OceanographyFlorida State UniversityTallahasseeUSA
  2. 2.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations