Methods for Studying Methanogens and Methanogenesis in Marine Sediments

  • R. John Parkes
  • H. Sass
  • G. Webster
  • A. J. Watkins
  • A. J. Weightman
  • L. A. O'Sullivan
  • B. A. Cragg


Despite the global importance of microbial methane production, knowledge of the methanogens involved and related anaerobic methane-oxidizing Euryarchaea (ANME) is quite limited. This includes the controls on methane production and consumption, which determines the atmospheric concentration of methane, which is an important greenhouse gas involved in climate change. This situation, in part, reflects the difficulty of culturing and studying these fastidious anaerobes. Here, we describe a range of cultivation and cultivation independent approaches that we have used to study methanogens, methanogenesis, and related processes in marine sediments, which contain globally significant methane concentrations.


Marine Sediment Butyl Rubber Stopper mcrA Gene Anaerobic Methane Oxidizer Methanogen Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for grants from the UK Natural Environment Research Council and the European Union to conduct much of this research.


  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296.PubMedGoogle Scholar
  2. Banning N, Brock F, Fry JC, Parkes RJ, Hornibrook ERC, Weightman AJ (2005) Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol 7: 947–960.PubMedCrossRefGoogle Scholar
  3. Cragg BA, Bale SJ, Parkes RJ (1992) A novel method for the transport and long term storage of cultures and samples in an anaerobic atmosphere. Letters in Applied Microbiology 15: 125–128.Google Scholar
  4. DeLong EF (1992) Archaea in coastal marine environments. Proceeding of the National Academy of Sciences USA 89: 5685–5689.Google Scholar
  5. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rrna sequencing. PLoS Biol 6: 2383–2400.CrossRefGoogle Scholar
  6. Dhillon A, Lever M, Lloyd KG, Albert DB, Sogin ML, Teske A (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcra) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71: 4592–4601.PubMedCrossRefGoogle Scholar
  7. Embley TM, Finlay BJ, Thomas RH, Dyal PL (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. Journal of General Microbiology 138: 1479–1487.Google Scholar
  8. Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I Archaea – the key methane producers in the rice rhizosphere. Science 313: 370–372.PubMedCrossRefGoogle Scholar
  9. Friedrich MW (2005) Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Meth Enzymol 397: 428–442.PubMedCrossRefGoogle Scholar
  10. Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17: 59–66.PubMedCrossRefGoogle Scholar
  11. Fry JC, Webster G, Cragg BA, Weightman AJ, Parkes RJ (2006) Analysis of DGGE profiles to explore the relationship between prokaryotic diversity and biogeochemical processes in deep subseafloor sediments from the Peru Margin FEMS Microbiology Ecology 58: 86–98.Google Scholar
  12. Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6: 205–226.PubMedCrossRefGoogle Scholar
  13. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rrna gene sequence retrieval. Appl Environ Microbiol 64: 960–969.PubMedGoogle Scholar
  14. Hales B, Edwards C, Ritchie D, Hall G, Pickup R, Saunders J (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62: 668–675.PubMedGoogle Scholar
  15. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcra) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69: 5483–5491.PubMedCrossRefGoogle Scholar
  16. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, et al. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 1457–1462.PubMedCrossRefGoogle Scholar
  17. Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46: 171–177.PubMedCrossRefGoogle Scholar
  18. Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, et al. (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoa, mmox, mxaf, mcra, and 16S rrna genes. Appl Environ Microbiol 70: 7445–7455.PubMedCrossRefGoogle Scholar
  19. Ince BK, Usenti I, Eyigor A, Oz NA, Kolukirik M, Ince O (2006) Analysis of methanogenic archaeal and sulfate reducing bacterial populations in deep sediments of the Black Sea. Geomicrobiol J 23: 285–292.CrossRefGoogle Scholar
  20. Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcra gene. Res Microbiol 157: 914–921.PubMedCrossRefGoogle Scholar
  21. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72: 5138–5141.PubMedCrossRefGoogle Scholar
  22. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56: 1525–1529.PubMedCrossRefGoogle Scholar
  23. Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu YT, Valentine DL (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp nov. Appl Environ Microbiol 73: 407–414.PubMedCrossRefGoogle Scholar
  24. Kormas KA, Meziti A, Dählmann A, Lange GJ, deLykousis V (2008) Characterization of methanogenic and prokaryotic assemblages based on mcra and 16S rrna gene diversity in sediments of the Kazan mud volcano (Mediterranean Sea). Geobiology 6: 450–460.PubMedCrossRefGoogle Scholar
  25. Kruger M, Treude T, Wolters H, Nauhaus K, Boetius A (2005) Microbial methane turnover in different marine habitats. Palaeogeogr Palaeoclim Palaeoecol 227: 6–17.CrossRefGoogle Scholar
  26. Kvenvolden KA (1988) Methane hydrate – a major reservoir of carbon in the shallow geosphere. Chem Geol 71: 41–51.CrossRefGoogle Scholar
  27. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101: 6176–6181.PubMedCrossRefGoogle Scholar
  28. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rrna. Appl Environ Microbiol 63: 4516–4522.PubMedGoogle Scholar
  29. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcra gene as an alternative to 16S rrna in the phylogenetic analysis of methanogen populations in landfills. Microbiology 148: 3521–3530.PubMedGoogle Scholar
  30. Marchesi JR, Weightman AJ, Cragg BA, Parkes RJ, Fry JC (2001) Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rrna molecular analysis. FEMS Microbiol Ecol 34: 221–228.PubMedCrossRefGoogle Scholar
  31. Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2: 323–327.PubMedCrossRefGoogle Scholar
  32. Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glockner FO, et al. (2005) Insights into the genomes of Archaea mediating the anaerobic oxidation of methane. Environ Microbiol 7: 1937–1951.PubMedCrossRefGoogle Scholar
  33. Mikucki JA, Liu YT, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp nov. Appl Environ Microbiol 69: 3311–3316.PubMedCrossRefGoogle Scholar
  34. Mink RW, Dugan PR (1977) Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 33: 713–717.PubMedGoogle Scholar
  35. Muyzer G, deWaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rrna. Appl Environ Microbiol 59: 695–700.PubMedGoogle Scholar
  36. Nakamura K, Terada T, Sekiguchi Y, Shinzato N, Meng XY, Enoki M, et al. (2006) Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl Environ Microbiol 72: 6907–6913.PubMedCrossRefGoogle Scholar
  37. Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6: 274–287.PubMedCrossRefGoogle Scholar
  38. Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134: 45–50.PubMedCrossRefGoogle Scholar
  39. Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, et al. (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6: 376–393.PubMedCrossRefGoogle Scholar
  40. O’Sullivan LA, Webster G, Fry JC, Parkes RJ, Weightman AJ (2008) Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments. J Microbiol Methods 75: 579–581.PubMedCrossRefGoogle Scholar
  41. Ovreas L, Forney L, Daae F, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16s rRNA. Applied and Environmental Microbiology 63: 3367–3373.Google Scholar
  42. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, et al. (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390–394.PubMedCrossRefGoogle Scholar
  43. Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, et al. (2007) Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 9: 1146–1161.PubMedCrossRefGoogle Scholar
  44. Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rrna genes. Appl Environ Microbiol 66: 930–936.PubMedCrossRefGoogle Scholar
  45. Raskin L, Poulsen L, Noguera D, Rittmann B, Stahl D (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60: 1241–1248.PubMedGoogle Scholar
  46. Sheppard SK, McCarthy AJ, Loughnane JP, Gray ND, Head IM, Lloyd D (2005) The impact of sludge amendment on methanogen community structure in an upland soil. Appl Soil Ecol 28: 147–162.CrossRefGoogle Scholar
  47. Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10: 277–285.Google Scholar
  48. Skillman LC, Evans PN, Strompl C, Joblin KN (2006) 16S rdna directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 42: 222–228.PubMedCrossRefGoogle Scholar
  49. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc Natl Acad Sci USA 103: 12115–12120.PubMedCrossRefGoogle Scholar
  50. Springer E, Sachs MS, Woese CR, Boone DR (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcri) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45: 554–559.PubMedCrossRefGoogle Scholar
  51. Tatsuoka N, Mohammed N, Mitsumori M, Tajima K, Hara K, Kurihara M, Itabashi H, et al. (2007) Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism. Animal Sci J 78: 512–518.CrossRefGoogle Scholar
  52. Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, et al. (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64: 2943–2951.PubMedGoogle Scholar
  53. Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methantrophic communities. Applied and Environmental Microbiology 68: 1994–2007.Google Scholar
  54. Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van 81: 271–282.CrossRefGoogle Scholar
  55. Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of Beta-proteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68: 20–30.PubMedCrossRefGoogle Scholar
  56. Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rdna-based techniques: a cautionary tale. J Microbiol Methods 55: 155–164.PubMedCrossRefGoogle Scholar
  57. Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58: 65–85.PubMedCrossRefGoogle Scholar
  58. Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, et al. (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environ Microbiol. 11: 239–257.PubMedCrossRefGoogle Scholar
  59. Whitby C, Earl J, Lanyon C, Gray S, Robinson J, Meadows J, et al. (2004) The molecular diversity of the methanogenic community in a hypereutrophic freshwater lake determined by PCR-RFLP. J Appl Microbiol 97: 973–984.PubMedCrossRefGoogle Scholar
  60. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, vol. 1. MP Starr, H Stolp, HG Truper, A Balows, HG Schlegal (eds.). Berlin: Springer, pp. 3352–3378.Google Scholar
  61. Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. Nov. Sp. Nov., and Desulfonema magnum sp. Nov. Arch Microbiol 134: 286–294.CrossRefGoogle Scholar
  62. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiology Ecology 59: 611–621.Google Scholar
  63. Wright ADG, Pimm C (2003) Improved strategy for presumptive identification of methanogens using 16S riboprinting. Journal of Microbiological Methods 55: 337–349.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. John Parkes
    • 1
  • H. Sass
    • 1
  • G. Webster
    • 1
    • 2
  • A. J. Watkins
    • 1
  • A. J. Weightman
    • 2
  • L. A. O'Sullivan
    • 2
  • B. A. Cragg
    • 1
  1. 1.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  2. 2.Cardiff School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations