Skip to main content

Hydrocarbon Degradation in Petroleum Reservoirs

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

In-reservoir petroleum biodegradation has resulted in vast deposits of heavy oil around the globe. Extraction of heavy oil is more costly and less efficient than conventional oil production and consequently oil biodegradation on geological timescales has significant economic and environmental impacts. The processes that have led to the biodegradation of oil in situ have only recently begun to be elucidated and we have at best a qualitative understanding of the factors that promote oil biodegradation in petroleum reservoirs. A synthesis of current thinking on the mechanisms of, and controls on, in-reservoir oil biodegradation is presented. This is placed in the context of oil-field microbiology and used to identify potentially fruitful avenues of research required to fill some of the gaps in our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Bastin E (1926) Microorganisms in oilfields. Science 63: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Brient JA, Wessner PJ, Doyle MN (1995) Naphthenic acids. In Encyclopedia of Chemical Technology, 4th edn. vol. 16JI Kroschwitz (ed.). New York: Wiley, pp. 1017–1029.

    Google Scholar 

  • Connan J (1984) Biodegradation of crude oils in reservoirs. In Advances in Petroleum Geochemistry. J Brooks, DH Welte (eds.). London: Academic Press, pp. 299–330.

    Google Scholar 

  • Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2: 442–452.

    Article  PubMed  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74: 3022–3029.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski A, Blanche D, Jeanthon C (2005b) Characterization of long-chain fatty-acid-degrading syntrophic associations from a biodegraded oil reservoir. Res Microbiol 156: 814–821.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005a) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54: 427–443.

    Article  PubMed  CAS  Google Scholar 

  • Grassia GS, McLean KM, Glenat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs, FEMS Microbiol Ecol 21: 47–58.

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344–352.

    Article  PubMed  CAS  Google Scholar 

  • Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A (2005) Hyperthermophilic and methanogenic archaea in oil fields. In Petroleum Microbiology. B Ollivier, M Magot (eds.). Washington DC: ASM Press, pp. 55–69.

    Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Larter S, Huang H, Adams J, Bennett B, Jokanola F, Oldenburgh T, Jones M, Head I, Riediger C, Fowler M (2006) The controls on the composition of biodegraded oils in the deep subsurface: Part II – Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. Am Assoc Pet Geol Bull 90: 921–938.

    CAS  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In Petroleum Microbiology. B Ollivier, M Magot (eds.). Washington DC: ASM Press, pp. 21–33.

    Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs, Antonie Van Leeuwenhoek 77: 103–116.

    Article  PubMed  CAS  Google Scholar 

  • Meredith W, Kelland S-J, Jones DM (2000) Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org Geochem 31: 1059–1073.

    Article  CAS  Google Scholar 

  • Nazina TN, Shestakova NM, Grigo’yan AA, Mikhailova EM, Tourova TP, Poltaraus AB, Feng C, Ni F, Belyaev SS (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P.R. China). Microbiology 75: 55–65.

    Article  CAS  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62: 728–731.

    PubMed  CAS  Google Scholar 

  • Ollivier B, Magot M (2005) Petroleum Microbiology. Washington DC: ASM Press, pp. 365.

    Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66: 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Palmer SE (1993) Effects of biodegradation and water washing on crude oil composition. In Organic Geochemistry. MH Engel, SA Macko (eds.). New York: Plenum Press, pp. 511–533.

    Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J 8: 11–28.

    Article  Google Scholar 

  • Roadifer RE (1987) Size distribution of the World’s largest known oil and tar accumulations. In Exploration of Heavy Crude Oil and Natural Bitumen. Studies in Geology, vol. 25. RF Meyer (ed.). Tulsa: American Association of Petroleum Geologists, pp. 3–23.

    Google Scholar 

  • Rock GJ (2003) The iron geochemistry of mudstones and metapelites. PhD thesis, University of Newcastle upon Tyne, pp. 240.

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude-oil by new types of sulfate-reducing bacteria. Nature 372: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In Petroleum Microbiology. B Ollivier, M Magot (eds.). Washington DC: ASM Press, pp. 201–213.

    Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37: 5213–5218.

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62: 1623–1629.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM, Westlake DWS (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol 56: 3748–3754.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Shen Y, Harrington CS, Telang AJ, Jack TR, Westlake DWS (1993) Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol 59: 4101–4114.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Voordouw JK, Karkhoff-Schweizer RR, Fedorak PM, Westlake DWS (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by dna hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol 57: 3070–3078.

    PubMed  CAS  Google Scholar 

  • Warren E, Bekins BA, Godsy EM, Smith VK (2004) Inhibition of acetoclastic methanogenesis in crude oil- and creosote-contaminated groundwater. Bioremediat J 8: 1–11.

    Article  CAS  Google Scholar 

  • Watanabe K, Kodama Y, Kaku N (2002) Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol 2: 23.

    Article  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. In Proceedings of the National Academy of Sciences of the USA 95: 6578–6583.

    Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12: 259−276.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep- burial sterilization. Nature 411: 1034–1037.

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the BACCHUS 2 biodegradation consortium which supported much of the work reported here. Bacchus members are Agip ENI, BP/Amoco, ChevronTexaco, ConocoPhillips, Norsk Hydro, Petrobras, Saudi Aramco, Shell, Statoil, Total, and Woodside. We also acknowledge support from the Natural Environment Research Council (NERC); Alberta Ingenuity Fund (AIF Scholarships to SRL, JJA), National Science and Engineering Research Council (NSERC); Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Head, I.M. et al. (2010). Hydrocarbon Degradation in Petroleum Reservoirs. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_232

Download citation

Publish with us

Policies and ethics