Genetics Engineering for Removal of Sulfur and Nitrogen from Fuel Heterocycles

  • E. Díaz
  • J. L. García
Reference work entry

Abstract:

Some heteroaromatic compounds, such as S- and N-heterocycles, are among the most toxic and recalcitrant contaminants of crude fuels, and may cause serious environmental (acid precipitation) and industrial (catalysts poisoning) problems. Dibenzothiophene (DBT) and carbazole are widely used as model compounds for S- and N-heterocycles, respectively. Different biochemical pathways for the degradation of these heterocycles have been described in a wide variety of microorganisms, and some of the corresponding catabolic gene clusters were characterized. Whereas a sulfur-specific pathway for DBT biodesulfurization (dsz pathway) has been extensively studied at the physiological, biochemical and genetic levels, a natural pathway for nitrogen-specific removal (biodenitrogenization) has not been yet described. Despite the fact an efficient DBT biodesulfurization depends on the expression and activity of the dsz gene products, host cell contributions also play a pivotal role in achieving the higher activities needed for developing a commercially viable process. A large number of recombinant bacteria have been engineered to overcome the major bottlenecks of the desulfurization process, and the efficient combination of carbazole degradation and DBT desulfurization in a single biocatalyst has been accomplished. The increased use of high-throughput omic techniques, as well as systems biology approaches, will contribute significantly to unravel the intricate regulatory and metabolic networks that govern the degradation of heteroaromatic compounds. These studies will pave the way for further metabolic flux modeling, and for the rational design of synthetic metabolic pathways for upgrading large volumes of fossil fuels – one of the greatest challenges addressed currently by biotechnology.

Keywords

Heteroaromatic Compound Flavin Reductase Desulfurization Activity Carbazole Degradation Desulfurization Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work in our laboratory was supported by grants from the Comisión Interministerial de Ciencia y Tecnología (GEN2006-27750-C5-3-E, BIO2006-05957, BFU2006-15214-CO3-01, MMA-PR21/06-039/2006/3-11.2, CSD2007-00005) and Comunidad Autónoma de Madrid (P-AMB-259-0505).

References

  1. Benedik MJ, Gibbs PR, Riddle R, Willson RC (1998) Microbial denitrogenation of fossil fuels. Trends Biotechnol 16: 390–395.PubMedCrossRefGoogle Scholar
  2. Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutant biosensors. In Microbial Biodegradation. Genomics and Molecular Biology. E Díaz (ed.). Norfolk: Caister Academic Press, pp. 97–143.Google Scholar
  3. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19: 354–359.PubMedCrossRefGoogle Scholar
  4. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176: 6707–6716.PubMedGoogle Scholar
  5. Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59: 2837–2843.PubMedGoogle Scholar
  6. Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73: 2832–2838.PubMedCrossRefGoogle Scholar
  7. Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2: 687–694.PubMedCrossRefGoogle Scholar
  8. Gallardo ME, Ferrández A, de Lorenzo V, García JL, Díaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179: 7156–7160.PubMedGoogle Scholar
  9. Gray KA, Mrachko GT, Squires CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6: 229–235.PubMedCrossRefGoogle Scholar
  10. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14: 1705–1709.PubMedCrossRefGoogle Scholar
  11. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66: 356–366.PubMedCrossRefGoogle Scholar
  12. Ishii Y, Konishi J, Suzuki M, Maruhashi K (2000) Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 90: 591–599.PubMedCrossRefGoogle Scholar
  13. Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17: 305–314.PubMedCrossRefGoogle Scholar
  14. Kilbane JJ II, Robbins J (2007) Characterization of the dszABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences. Appl Microbiol Biotechnol 75: 843–851.PubMedCrossRefGoogle Scholar
  15. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2-sulfinic acid desulfinase. J Biol Chem 281: 32534–32539.PubMedCrossRefGoogle Scholar
  16. Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74: 971–976.PubMedCrossRefGoogle Scholar
  17. Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 178: 6409–6418.PubMedGoogle Scholar
  18. Ma T, Li G, Li J, Liang F, Liu R (2006) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28: 1095–1100.PubMedCrossRefGoogle Scholar
  19. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T (2003) Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 326: 21–33.PubMedCrossRefGoogle Scholar
  20. Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189: 6849–6860.PubMedCrossRefGoogle Scholar
  21. Miyakoshi M, Urata M, Habe H, Omori T, Yamane H, Nojiri H (2006) Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence. J Biol Chem 281: 8450–8457.PubMedGoogle Scholar
  22. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11: 540–546.PubMedCrossRefGoogle Scholar
  23. Noda K, Watanabe K, Maruhashi K (2003) Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane. Biotechnol Lett 25: 1147–1150.PubMedCrossRefGoogle Scholar
  24. Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K (2005) Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100: 266–273.PubMedCrossRefGoogle Scholar
  25. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63: 1–9.PubMedCrossRefGoogle Scholar
  26. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71: 2815–2821.PubMedCrossRefGoogle Scholar
  27. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61: 468–475.PubMedGoogle Scholar
  28. Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88: 94–99.PubMedCrossRefGoogle Scholar
  29. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67: 72–79.PubMedCrossRefGoogle Scholar
  30. Riddle RR, Gibbs PR, Willson RC, Benedik MJ (2003) Recombinant carbazole-degrading strains for enhanced petroleum processing. J Ind Microbiol Biotechnol 30: 6–12.PubMedGoogle Scholar
  31. Sato SI, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T (1997) Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179: 4841–4849.PubMedGoogle Scholar
  32. Shepherd JM, Lloyd-Jones G (1998) Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem Biophys Res Commun 247: 129–135.PubMedCrossRefGoogle Scholar
  33. Shintani M, Urata M, Inoue K, Eto K, Habe H, Omori T, Yamane H, Nojiri H (2007) The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol 189: 2007–2020.PubMedCrossRefGoogle Scholar
  34. Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178: 351–357.PubMedCrossRefGoogle Scholar
  35. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72: 4604–4609.PubMedCrossRefGoogle Scholar
  36. Urata M, Miyakoshi M, Kai S, Maeda K, Habe H, Omori T, Yamane H, Nojiri H (2004) Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186: 6815–6823.PubMedCrossRefGoogle Scholar
  37. Urata M, Uchimura H, Noguchi H, Sakaguchi T, Takemura T, Eto K, Habe H, Omori T, Yamane H, Nojiri H (2006) Plasmid pCAR3 contains multiple gene sets involved in the conversion of carbazole to anthranilate. Appl Environ Microbiol 72: 3198–3205.PubMedCrossRefGoogle Scholar
  38. Watanabe K, Noda K, Maruhashi K (2003) Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis. Biotechnol Lett 25: 1299–1304.PubMedCrossRefGoogle Scholar
  39. Xu P, Yu B, Li F, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14: 398–405.PubMedCrossRefGoogle Scholar
  40. Yu B, Ma C, Zhou W, Zhu S, Wang Y, Qu J, Li F, Xu P (2006) Simultaneous biodetoxification of S, N, and O pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72: 7373–7376.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. Díaz
    • 1
  • J. L. García
    • 2
  1. 1.Department of Molecular Microbiology, Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Departamento de Microbiología Molecular, Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations