Advertisement

Diabetic Nephropathy

  • M. Loredana Marcovecchio
  • Francesco Chiarelli

Abstract

Over the last decades, the incidence of childhood-onset type 1 diabetes has significantly increased, particularly in children under the age of 5 years (1). Microvascular and macrovascular diseases represent serious long-term complications, which contribute to the poor prognosis of children and adolescents with diabetes (2, 3, 4). Recent data from the USA have shown that the number of life-years lost among children diagnosed with diabetes at the age of 10 years is 18.7 for boys and 19.0 for girls, thereby underlining the burden of the disease (5).

Keywords

Glomerular Filtration Rate Diabetic Nephropathy Connective Tissue Growth Factor Aldose Reductase Diabetes Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000;355:873–876.Google Scholar
  2. 2.
    Bryden KS, Dunger DB, Mayou RA, Peveler RC, Neil HA. Poor prognosis of young adults with type 1 diabetes: a longitudinal study. Diabetes Care 2003;26:1052–1057.PubMedCrossRefGoogle Scholar
  3. 3.
    Dorman JS, Laporte RE, Kuller LH, Cruickshanks KJ, Orchard TJ, Wagener DK, Becker DJ, Cavender DE, Drash AL. The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study. Mortality results. Diabetes 1984;33:271–276.Google Scholar
  4. 4.
    Orchard TJ, Dorman JS, Maser RE, Becker DJ, Drash AL, Ellis D, LaPorte RE, Kuller LH. Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes 1990;39:1116–1124.PubMedCrossRefGoogle Scholar
  5. 5.
    Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF: Lifetime risk for diabetes mellitus in the United States. JAMA 2003;290:1884–1890.PubMedCrossRefGoogle Scholar
  6. 6.
    Rossing P. Prediction, progression and prevention of diabetic nephropathy. The Minkowski Lecture 2005. Diabetologia 2006;49:11–19.PubMedCrossRefGoogle Scholar
  7. 7.
    US Renal Data system: annual Data Report 2005. Available: http://www.usrds.org/adr.htm.
  8. 8.
    Van Dijk PC, Jager KJ, Stengel B, Gronhagen-Riska C, Feest TG, Briggs JD. Renal replacement therapy for diabetic end-stage renal disease: data from 10 registries in Europe (1991–2000). Kidney Int 2005;67:1489–1499.PubMedCrossRefGoogle Scholar
  9. 9.
    Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med 2000;160:1093–1100.PubMedCrossRefGoogle Scholar
  10. 10.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:164–176.PubMedCrossRefGoogle Scholar
  11. 11.
    Joner G, Brinchmann-Hansen O, Torres CG, Hanssen KF. A nationwide cross-sectional study of retinopathy and microalbuminuria in young Norwegian type 1 (insulin-dependent) diabetic patients. Diabetologia 1992;35:1049–1054.PubMedCrossRefGoogle Scholar
  12. 12.
    Mortensen HB, Marinelli K, Norgaard K, Main K, Kastrup KW, Ibsen KK, Villumsen J, Parving HH. A nation-wide cross-sectional study of urinary albumin excretion rate, arterial blood pressure and blood glucose control in Danish children with type 1 diabetes mellitus. Danish Study Group of Diabetes in Childhood. Diabet Med 1990;7:887–897.PubMedCrossRefGoogle Scholar
  13. 13.
    Lawson ML, Sochett EB, Chait PG, Balfe JW, Daneman D. Effect of puberty on markers of glomerular hypertrophy and hypertension in IDDM. Diabetes 1996;45:51–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Kostraba JN, Dorman JS, Orchard TJ, Becker DJ, Ohki Y, Ellis D, Doft BH, Lobes LA, LaPorte RE, Drash AL. Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects. Diabetes Care 1989;12:686–693.PubMedCrossRefGoogle Scholar
  15. 15.
    Rossing P, Hougaard P, Borch-Johnsen K, Parving HH. Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 1996;313:779–784.PubMedCrossRefGoogle Scholar
  16. 16.
    Viberti GC, Jarrett RJ, Keen H. Microalbuminuria as prediction of nephropathy in diabetics. Lancet 1982;2:611.PubMedCrossRefGoogle Scholar
  17. 17.
    Bojestig M, Arnqvist HJ, Karlberg BE, Ludvigsson J. Glycemic control and prognosis in type I diabetic patients with microalbuminuria. Diabetes Care 1996;19:313–317.PubMedCrossRefGoogle Scholar
  18. 18.
    Olsen BS, Sjolie A, Hougaard P, Johannesen J, Borch-Johnsen K, Marinelli K, Thorsteinsson B, Pramming S, Mortensen HB. A 6-year nationwide cohort study of glycaemic control in young people with type 1 diabetes. Risk markers for the development of retinopathy, nephropathy and neuropathy. Danish Study Group of Diabetes in Childhood. J Diabetes Complications 2000;14:295–300.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones CA, Leese GP, Kerr S, Bestwick K, Isherwood DI, Vora JP, Hughes DA, Smith C. Development and progression of microalbuminuria in a clinic sample of patients with insulin dependent diabetes mellitus. Arch Dis Child 1998;78:518–523.PubMedCrossRefGoogle Scholar
  20. 20.
    Rudberg S, Ullman E, Dahlquist G. Relationship between early metabolic control and the development of microalbuminuria – a longitudinal study in children with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1993;36:1309–1314.PubMedCrossRefGoogle Scholar
  21. 21.
    Gorman D, Sochett E, Daneman D. The natural history of microalbuminuria in adolescents with type 1 diabetes. J Pediatr 1999;134:333–337.PubMedCrossRefGoogle Scholar
  22. 22.
    Amin R, Widmer B, Prevost AT, Schwarze P, Cooper J, Edge J, Marcovecchio L, Neil A, Dalton RN, Dunger DB. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ 2008;336:697–701.PubMedCrossRefGoogle Scholar
  23. 23.
    Schultz CJ, Neil HA, Dalton RN, Dunger DB. Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care 2000;23:1811–1815.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunger DB, Schwarze CP, Cooper JD, Widmer B, Neil HA, Shield J, Edge JA, Jones TW, Daneman D, Dalton RN. Can we identify adolescents at high risk for nephropathy before the development of microalbuminuria? Diabet Med 2007;24:131–136.PubMedCrossRefGoogle Scholar
  25. 25.
    Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia 1999;42:263–285.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Bryan GT, Hostetter TH. The renal hemodynamic basis of diabetic nephropathy. Semin Nephrol 1997;17:93–100.PubMedGoogle Scholar
  27. 27.
    Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DR, Dalton RN, Dunger DB. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: The Oxford Regional Prospective Study. Kidney Int 2005;68:1740–1749.PubMedCrossRefGoogle Scholar
  28. 28.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984;311:89–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy – an 8-year prospective study. Kidney Int 1992;41:822–828.PubMedCrossRefGoogle Scholar
  30. 30.
    Chiarelli F, Verrotti A, Morgese G. Glomerular hyperfiltration increases the risk of developing microalbuminuria in diabetic children. Pediatr Nephrol 1995;9:154–158.PubMedCrossRefGoogle Scholar
  31. 31.
    Yip JW, Jones SL, Wiseman MJ, Hill C, Viberti G. Glomerular hyperfiltration in the prediction of nephropathy in IDDM: a 10-year follow-up study. Diabetes 1996;45:1729–1733.PubMedCrossRefGoogle Scholar
  32. 32.
    Lervang HH, Jensen S, Brochner-Mortensen J, Ditzel J. Does increased glomerular filtration rate or disturbed tubular function early in the course of childhood type 1 diabetes predict the development of nephropathy? Diabet Med 1992;9:635–640.PubMedCrossRefGoogle Scholar
  33. 33.
    Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 1994;43:1358–1364.PubMedCrossRefGoogle Scholar
  34. 34.
    Fioretto P, Bruseghin M, Berto I, Gallina P, Manzato E, Mussap M. Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol 2006;17:S86–S89.PubMedCrossRefGoogle Scholar
  35. 35.
    Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003;348:2285–2293.PubMedCrossRefGoogle Scholar
  36. 36.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.Google Scholar
  37. 37.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.Google Scholar
  38. 38.
    Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr 1994;125:177–188.Google Scholar
  39. 39.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 2003;290:2159–2167.Google Scholar
  40. 40.
    Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med 1995;332:1251–1255.PubMedCrossRefGoogle Scholar
  41. 41.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.PubMedCrossRefGoogle Scholar
  42. 42.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989;32:219–226.PubMedCrossRefGoogle Scholar
  43. 43.
    The ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 2001;134:370–379.Google Scholar
  44. 44.
    O’Hare P, Bilbous R, Mitchell T, CJ OC, Viberti GC. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care 2000;23:1823–1829.PubMedCrossRefGoogle Scholar
  45. 45.
    Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes 1994;43:1248–1253.PubMedCrossRefGoogle Scholar
  46. 46.
    Moore WV, Donaldson DL, Chonko AM, Ideus P, Wiegmann TB. Ambulatory blood pressure in type I diabetes mellitus. Comparison to presence of incipient nephropathy in adolescents and young adults. Diabetes 1992;41:1035–1041.PubMedCrossRefGoogle Scholar
  47. 47.
    Mathiesen ER, Ronn B, Jensen T, Storm B, Deckert T. Relationship between blood pressure and urinary albumin excretion in development of microalbuminuria. Diabetes 1990;39:245–249.PubMedCrossRefGoogle Scholar
  48. 48.
    Risk factors for development of microalbuminuria in insulin dependent diabetic patients: a cohort study. Microalbuminuria Collaborative Study Group, United Kingdom. BMJ 1993;306:1235–1239.Google Scholar
  49. 49.
    Schultz CJ, Neil HA, Dalton RN, Konopelska Bahu T, Dunger DB. Blood pressure does not rise before the onset of microalbuminuria in children followed from diagnosis of type 1 diabetes. Oxford Regional Prospective Study Group. Diabetes Care 2001;24:555–560.PubMedCrossRefGoogle Scholar
  50. 50.
    Lurbe E, Redon J, Pascual JM, Tacons J, Alvarez V. The spectrum of circadian blood pressure changes in type I diabetic patients. J Hypertens 2001;19:1421–1428.PubMedCrossRefGoogle Scholar
  51. 51.
    Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 2002;347:797–805.PubMedCrossRefGoogle Scholar
  52. 52.
    Poulsen PL, Juhl B, Ebbehoj E, Klein F, Christiansen C, Mogensen CE. Elevated ambulatory blood pressure in microalbuminuric IDDM patients is inversely associated with renal plasma flow. A compensatory mechanism? Diabetes Care 1997;20:429–432.CrossRefGoogle Scholar
  53. 53.
    Caramori ML, Fioretto P, Mauer M. Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol 2006;17:339–352.PubMedCrossRefGoogle Scholar
  54. 54.
    Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, Binder C, Parving HH. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 2004;328:1105.PubMedCrossRefGoogle Scholar
  55. 55.
    Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N. Factors associated with progression to macroalbuminuria in microalbuminuric Type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 2004;47:1020–1028.PubMedCrossRefGoogle Scholar
  56. 56.
    Ellis D, Lloyd C, Becker DJ, Forrest KY, Orchard TJ. The changing course of diabetic nephropathy: low-density lipoprotein cholesterol and blood pressure correlate with regression of proteinuria. Am J Kidney Dis 1996;27:809–818.PubMedCrossRefGoogle Scholar
  57. 57.
    Kordonouri O, Danne T, Hopfenmuller W, Enders I, Hovener G, Weber B. Lipid profiles and blood pressure: are they risk factors for the development of early background retinopathy and incipient nephropathy in children with insulin-dependent diabetes mellitus? Acta Paediatr 1996; 85:43–48.PubMedCrossRefGoogle Scholar
  58. 58.
    Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, Holl RW. Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 2007;30:2523–2528.PubMedCrossRefGoogle Scholar
  59. 59.
    Abraha A, Schultz C, Konopelska-Bahu T, James T, Watts A, Stratton IM, Matthews DR, Dunger DB. Glycaemic control and familial factors determine hyperlipidaemia in early childhood diabetes. Oxford Regional Prospective Study of Childhood Diabetes. Diabet Med 1999;16:598–604.PubMedCrossRefGoogle Scholar
  60. 60.
    Schultz CJ, Amin R, Dunger DB. Markers of microvascular complications in insulin dependent diabetes. Arch Dis Child 2002;87:10–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Dunger DB. Diabetes in puberty. Arch Dis Child 1992;67:569–570.PubMedCrossRefGoogle Scholar
  62. 62.
    Schultz CJ, Konopelska-Bahu T, Dalton RN, Carroll TA, Stratton I, Gale EA, Neil A, Dunger DB. Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care 1999;22:495–502.PubMedCrossRefGoogle Scholar
  63. 63.
    Amin R, Schultz C, Ong K, Frystyk J, Dalton RN, Perry L, Orskov H, Dunger DB. Low IGF-I and elevated testosterone during puberty in subjects with type 1 diabetes developing microalbuminuria in comparison to normoalbuminuric control subjects: the Oxford Regional Prospective Study. Diabetes Care 2003;26:1456–1461.PubMedCrossRefGoogle Scholar
  64. 64.
    Bloch CA, Clemons P, Sperling MA. Puberty decreases insulin sensitivity. J Pediatr 1987;110:481–487.PubMedCrossRefGoogle Scholar
  65. 65.
    Caprio S, Plewe G, Diamond MP, Simonson DC, Boulware SD, Sherwin RS, Tamborlane WV. Increased insulin secretion in puberty: a compensatory response to reductions in insulin sensitivity. J Pediatr 1989;114:963–967.PubMedCrossRefGoogle Scholar
  66. 66.
    Dunger DB, Acerini CL. IGF-I and diabetes in adolescence. Diabetes Metab 1998;24:101–107.PubMedGoogle Scholar
  67. 67.
    Dunger DB, Cheetham TD. Growth hormone insulin-like growth factor I axis in insulin-dependent diabetes mellitus. Horm Res 1996;46:2–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Cummings EA, Sochett EB, Dekker MG, Lawson ML, Daneman D. Contribution of growth hormone and IGF-I to early diabetic nephropathy in type 1 diabetes. Diabetes 1998;47:1341–1346.PubMedCrossRefGoogle Scholar
  69. 69.
    Dahlquist G, Rudberg S: The prevalence of microalbuminuria in diabetic children and adolescents and its relation to puberty. Acta Paediatr Scand 1987;76:795–800.PubMedCrossRefGoogle Scholar
  70. 70.
    Rogers DG, White NH, Shalwitz RA, Palmberg P, Smith ME, Santiago JV. The effect of puberty on the development of early diabetic microvascular disease in insulin-dependent diabetes. Diabetes Res Clin Pract 1987;3:39–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Janner M, Knill SE, Diem P, Zuppinger KA, Mullis PE. Persistent microalbuminuria in adolescents with type I (insulin-dependent) diabetes mellitus is associated to early rather than late puberty. Results of a prospective longitudinal study. Eur J Pediatr 1994;153:403–408.PubMedCrossRefGoogle Scholar
  72. 72.
    Kordonouri O, Danne T, Enders I, Weber B. Does the long-term clinical course of type I diabetes mellitus differ in patients with prepubertal and pubertal onset? Results of the Berlin Retinopathy Study. Eur J Pediatr 1998;157:202–207.PubMedCrossRefGoogle Scholar
  73. 73.
    Holl RW, Grabert M, Heinze E, Sorgo W, Debatin KM. Age at onset and long-term metabolic control affect height in type-1 diabetes mellitus. Eur J Pediatr 1998;157:972–977.PubMedCrossRefGoogle Scholar
  74. 74.
    McNally PG, Raymond NT, Swift PG, Hearnshaw JR, Burden AC. Does the prepubertal duration of diabetes influence the onset of microvascular complications? Diabet Med 1993;10:906–908.PubMedCrossRefGoogle Scholar
  75. 75.
    Donaghue KC, Fung AT, Hing S, Fairchild J, King J, Chan A, Howard NJ, Silink M. The effect of prepubertal diabetes duration on diabetes. Microvascular complications in early and late adolescence. Diabetes Care 1997;20:77–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Donaghue KC, Fairchild JM, Craig ME, Chan AK, Hing S, Cutler LR, Howard NJ, Silink M. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care 2003;26:1224–1229.PubMedCrossRefGoogle Scholar
  77. 77.
    Danne T, Kordonouri O, Casani A, Tumini S, Chiarelli F. Recent advances on the pathogenesis and management of both diabetic retinopathy and nephropathy with particular reference to children and adolescents with Type 1 diabetes. Diabetes Nutr Metab 1999;12:136–144.PubMedGoogle Scholar
  78. 78.
    Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type I diabetes. Am J Med 1985;78:785–794.PubMedCrossRefGoogle Scholar
  79. 79.
    Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989;320:1161–1165.PubMedCrossRefGoogle Scholar
  80. 80.
    Rudberg S, Stattin EL, Dahlquist G. Familial and perinatal risk factors for micro- and macroalbuminuria in young IDDM patients. Diabetes 1998;47:1121–1126.PubMedCrossRefGoogle Scholar
  81. 81.
    Viberti GC, Keen H, Wiseman MJ. Raised arterial pressure in parents of proteinuric insulin dependent diabetics. Br Med J (Clin Res Ed) 1987;295:515–517CrossRefGoogle Scholar
  82. 82.
    Krolewski AS, Canessa M, Warram JH, Laffel LM, Christlieb AR, Knowler WC, Rand LI. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 1988;318:140–145.PubMedCrossRefGoogle Scholar
  83. 83.
    Roglic G, Colhoun HM, Stevens LK, Lemkes HH, Manes C, Fuller JH. Parental history of hypertension and parental history of diabetes and microvascular complications in insulin-dependent diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med 1998;15:418–426.PubMedCrossRefGoogle Scholar
  84. 84.
    De Cosmo S, Bacci S, Piras GP, Cignarelli M, Placentino G, Margaglione M, Colaizzo D, Di Minno G, Giorgino R, Liuzzi A, Viberti GC. High prevalence of risk factors for cardiovascular disease in parents of IDDM patients with albuminuria. Diabetologia 1997;40:1191–1196.PubMedCrossRefGoogle Scholar
  85. 85.
    Sale MM, Freedman BI. Genetic determinants of albuminuria and renal disease in diabetes mellitus. Nephrol Dial Transplant 2006;21:13–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Conway BR, Savage DA, Maxwell AP. Identifying genes for diabetic nephropathy – current difficulties and future directions. Nephrol Dial Transplant 2006;21:3012–3017.PubMedCrossRefGoogle Scholar
  87. 87.
    Tarnow L, Gluud C, Parving HH. Diabetic nephropathy and the insertion/deletion polymorphism of the angiotensin-converting enzyme gene. Nephrol Dial Transplant 1998;13:1125–1130.PubMedCrossRefGoogle Scholar
  88. 88.
    Penno G, Chaturvedi N, Talmud PJ, Cotroneo P, Manto A, Nannipieri M, Luong LA, Fuller JH. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Diabetes 1998;47:1507–1511.PubMedCrossRefGoogle Scholar
  89. 89.
    Rippin JD, Patel A, Bain SC. Genetics of diabetic nephropathy. Best Pract Res Clin Endocrinol Metab 2001;15:345–358.PubMedCrossRefGoogle Scholar
  90. 90.
    Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M. Smoking is associated with progression of diabetic nephropathy. Diabetes Care 1994;17:126–131.PubMedCrossRefGoogle Scholar
  91. 91.
    Gambaro G, Bax G, Fusaro M, Normanno M, Manani SM, Zanella M, Dangelo A, Fedele D, Favaro S. Cigaratte smoking is a risk factor for nephropathy and its progression in type 2 diabetes mellitus. Diabetes Nutr Metab 2001;14:337–342.PubMedGoogle Scholar
  92. 92.
    Chase HP, Garg SK, Marshall G, Berg CL, Harris S, Jackson WE, Hamman RE. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 1991;265:614–617.PubMedCrossRefGoogle Scholar
  93. 93.
    Smith CJ, Steichen TJ. The atherogenic potential of carbon monoxide. Atherosclerosis 1993;99:137–149.PubMedCrossRefGoogle Scholar
  94. 94.
    Poulsen PL, Ebbehoj E, Hansen KW, Mogensen CE. Effects of smoking on 24-h ambulatory blood pressure and autonomic function in normoalbuminuric insulin-dependent diabetes mellitus patients. Am J Hypertens 1998;11:1093–1099.PubMedCrossRefGoogle Scholar
  95. 95.
    Pecis M, de Azevedo MJ, Gross JL. Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients. Diabetes Care 1994;17:665–672.PubMedCrossRefGoogle Scholar
  96. 96.
    Toeller M, Buyken A, Heitkamp G, Bramswig S, Mann J, Milne R, Gries FA, Keen H. Protein intake and urinary albumin excretion rates in the EURODIAB IDDM Complications Study. Diabetologia 1997;40:1219–1226.PubMedCrossRefGoogle Scholar
  97. 97.
    Kontessis PA, Bossinakou I, Sarika L, Iliopoulou E, Papantoniou A, Trevisan R, Roussi D, Stipsanelli K, Grigorakis S, Souvatzoglou A. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 1995;18:1233.PubMedCrossRefGoogle Scholar
  98. 98.
    Mollsten AV, Dahlquist GG, Stattin EL, Rudberg S. Higher intakes of fish protein are related to a lower risk of microalbuminuria in young Swedish type 1 diabetic patients. Diabetes Care 2001;24:805–810.PubMedCrossRefGoogle Scholar
  99. 99.
    Rosenberg ME, Swanson JE, Thomas BL, Hostetter TH. Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol 1987;253:F1083–F1090.PubMedGoogle Scholar
  100. 100.
    Kunisaki M, Fumio U, Nawata H, King GL. Vitamin E normalizes diacylglycerol-protein kinase C activation induced by hyperglycemia in rat vascular tissues. Diabetes 1996;45 Suppl 3:S117–S119.PubMedGoogle Scholar
  101. 101.
    Toeller M, Buyken AE, Heitkamp G, de Pergola G, Giorgino F, Fuller JH. Fiber intake, serum cholesterol levels, and cardiovascular disease in European individuals with type 1 diabetes. EURODIAB IDDM Complications Study Group. Diabetes Care 1999;22 Suppl 2:B21–B28.PubMedGoogle Scholar
  102. 102.
    Jensen T, Stender S, Goldstein K, Holmer G, Deckert T. Partial normalization by dietary cod-liver oil of increased microvascular albumin leakage in patients with insulin-dependent diabetes and albuminuria. N Engl J Med 1989;321:1572–1577.PubMedCrossRefGoogle Scholar
  103. 103.
    Chiarelli F, Santilli F, Sabatino G, Blasetti A, Tumini S, Cipollone F, Mezzetti A, Verrotti A. Effects of vitamin E supplementation on intracellular antioxidant enzyme production in adolescents with type 1 diabetes and early microangiopathy. Pediatr Res 2004;56:720–725.PubMedCrossRefGoogle Scholar
  104. 104.
    Zitouni K, Harry DD, Nourooz-Zadeh J, Betteridge DJ, Earle KA. Circulating vitamin E, transforming growth factor beta1, and the association with renal disease susceptibility in two racial groups with type 2 diabetes. Kidney Int 2005;67:1993–1998.PubMedCrossRefGoogle Scholar
  105. 105.
    Farvid MS, Jalali M, Siassi F, Hosseini M. Comparison of the effects of vitamins and/or mineral supplementation on glomerular and tubular dysfunction in type 2 diabetes. Diabetes Care 2005;28:2458–2464.PubMedCrossRefGoogle Scholar
  106. 106.
    Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC. Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 2006;29:2072–2077.PubMedCrossRefGoogle Scholar
  107. 107.
    Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 2005;48:1439–1444.PubMedCrossRefGoogle Scholar
  108. 108.
    Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis 1994;23:171–175.PubMedGoogle Scholar
  109. 109.
    Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001;44:1957–1972.PubMedCrossRefGoogle Scholar
  110. 110.
    Osterby R. Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia 1992;35:803–812.PubMedCrossRefGoogle Scholar
  111. 111.
    Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007;27:195–207.PubMedCrossRefGoogle Scholar
  112. 112.
    Mauer M, Najafian B. The structure of human diabetic nephropathy. In The Diabetic Kidney. Cortes P, Mogensen CE (eds.). Humana, 2006, pp. 361–374.Google Scholar
  113. 113.
    Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004;34:785–796.PubMedCrossRefGoogle Scholar
  114. 114.
    Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 1998;54:687–697.PubMedCrossRefGoogle Scholar
  115. 115.
    Mauer SM, Steffes MW, Michael AF, Brown DM. Studies of diabetic nephropathy in animals and man. Diabetes 1976;25:850–857.PubMedCrossRefGoogle Scholar
  116. 116.
    Paulsen EP, Burke BA, Vernier RL, Mallare MJ, Innes DJ Jr., Sturgill BC. Juxtaglomerular body abnormalities in youth-onset diabetic subjects. Kidney Int 1994;45:1132–1139.PubMedCrossRefGoogle Scholar
  117. 117.
    Ruggenenti P, Schieppati A, Remuzzi G. Progression, remission, regression of chronic renal diseases. Lancet 2001;357:1601–1608.PubMedCrossRefGoogle Scholar
  118. 118.
    Carmines PK, Bast JP, Ishii N. Altered renal microvascular function in early diabetes. In The Diabetic Kidney. Cortes P, Mogensen CE (eds.). Humana, 2006, pp. 23–36.Google Scholar
  119. 119.
    Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999;48:2066–2073.PubMedCrossRefGoogle Scholar
  120. 120.
    Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 1994;93:2431–2437.PubMedCrossRefGoogle Scholar
  121. 121.
    Wolf G. Growth factors and the development of diabetic nephropathy. Curr Diab Rep 2003;3:485–490.PubMedCrossRefGoogle Scholar
  122. 122.
    Cooper ME, Thomas MC. Interactions between growth factors in the kidney: implications for progressive renal injury. Kidney Int 2003;63:1584–1585.PubMedCrossRefGoogle Scholar
  123. 123.
    Chiarelli F, Santilli F, Mohn A. Role of growth factors in the development of diabetic complications. Horm Res 2000;53:53–67.PubMedCrossRefGoogle Scholar
  124. 124.
    Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 2004;65:2003–2017.PubMedCrossRefGoogle Scholar
  125. 125.
    Santilli F, Spagnoli A, Mohn A, Tumini S, Verrotti A, Cipollone F, Mezzetti A, Chiarelli F. Increased vascular endothelial growth factor serum concentrations may help to identify patients with onset of type 1 diabetes during childhood at risk for developing persistent microalbuminuria. J Clin Endocrinol Metab 2001;86:3871–3876.PubMedCrossRefGoogle Scholar
  126. 126.
    Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998;53:853–861.PubMedCrossRefGoogle Scholar
  127. 127.
    Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 2000;11:25–38.PubMedGoogle Scholar
  128. 128.
    Wahab NA, Yevdokimova N, Weston BS, Roberts T, Li XJ, Brinkman H, Mason RM. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J 2001;359:77–87.PubMedCrossRefGoogle Scholar
  129. 129.
    Gilbert RE, Akdeniz A, Weitz S, Usinger WR, Molineaux C, Jones SE, Langham RG, Jerums G. Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care 2003;26:2632–2636.PubMedCrossRefGoogle Scholar
  130. 130.
    Roestenberg P, van Nieuwenhoven FA, Wieten L, Boer P, Diekman T, Tiller AM, Wiersinga WM, Oliver N, Usinger W, Weitz S, Schlingemann RO, Goldschmeding R. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Diabetes Care 2004;27:1164–1170.PubMedCrossRefGoogle Scholar
  131. 131.
    Nguyen TQ, Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, Parving HH, Rossing P, van Nieuwenhoven FA, Goldschmeding R. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care, 2008;31:1177–1182.Google Scholar
  132. 132.
    Hishikawa K, Oemar BS, Nakaki T. Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem 2001;276:16797–16803.PubMedCrossRefGoogle Scholar
  133. 133.
    Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim HS, Oh Y, Rosenfeld RG. Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 2001;142:1760–1769.PubMedCrossRefGoogle Scholar
  134. 134.
    Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008;19:433–442.PubMedCrossRefGoogle Scholar
  135. 135.
    Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci 2008;13:944–955.PubMedCrossRefGoogle Scholar
  136. 136.
    Sassy-Prigent C, Heudes D, Mandet C, Belair MF, Michel O, Perdereau B, Bariety J, Bruneval P. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000;49:466–475.PubMedCrossRefGoogle Scholar
  137. 137.
    Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, Camussi G, Gruden G. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008;51:198–207.PubMedCrossRefGoogle Scholar
  138. 138.
    Kanamori H, Matsubara T, Mima A, Sumi E, Nagai K, Takahashi T, Abe H, Iehara N, Fukatsu A, Okamoto H, Kita T, Doi T, Arai H. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem Biophys Res Commun 2007;360:772–777.PubMedCrossRefGoogle Scholar
  139. 139.
    Chiarelli F, Cipollone F, Mohn A, Marini M, Iezzi A, Fazia M, Tumini S, De Cesare D, Pomilio M, Pierdomenico SD, Di Gioacchino M, Cuccurullo F, Mezzetti A. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care 2002;25:1829–1834.PubMedCrossRefGoogle Scholar
  140. 140.
    Chiarelli F, Mansour M, Verrotti A. Advanced glycation end-products in diabetes mellitus, with particular reference to angiopathy. Diabetes Nutr Metab 2000;13:192–199.PubMedGoogle Scholar
  141. 141.
    Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001;44:129–146.PubMedCrossRefGoogle Scholar
  142. 142.
    Forbes JM, Cooper ME, Oldfield MD, Thomas MC: Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 2003;14:S254–S258.PubMedCrossRefGoogle Scholar
  143. 143.
    Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007;27:130–143.PubMedCrossRefGoogle Scholar
  144. 144.
    Chiarelli F, Catino M, Tumini S, Cipollone F, Mezzetti A, Vanelli M, Verrotti A. Advanced glycation end products in adolescents and young adults with diabetic angiopathy. Pediatr Nephrol 2000;14:841–846.PubMedCrossRefGoogle Scholar
  145. 145.
    Williams ME. New potential agents in treating diabetic kidney disease: the fourth act. Drugs 2006;66:2287–2298.PubMedCrossRefGoogle Scholar
  146. 146.
    Humpert PM, Kopf S, Djuric Z, Wendt T, Morcos M, Nawroth PP, Bierhaus A. Plasma sRAGE is independently associated with urinary albumin excretion in type 2 diabetes. Diabetes Care 2006;29:1111–1113.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, Sato A, Imaizumi T. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev 2007;23:368–371.PubMedCrossRefGoogle Scholar
  148. 148.
    Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Nakatani Y, Ohtoshi K, Hayaishi-Okano R, Kosugi K, Hori M, Yamasaki Y. Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care 2005;28:2716–2721.PubMedCrossRefGoogle Scholar
  149. 149.
    DeRubertis FR, Craven PA. Oxidative and glycooxidative stres in diabetic nephropathy. In The Diabetic Kidney. Cortes P, Mogensen CE (eds.). Humana, 2006, pp. 151–172.Google Scholar
  150. 150.
    Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000;97:12222–12226.PubMedCrossRefGoogle Scholar
  151. 151.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.PubMedCrossRefGoogle Scholar
  152. 152.
    Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl 2000;77:S13–S18.PubMedCrossRefGoogle Scholar
  153. 153.
    Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int 2007;Suppl:S49–S53.Google Scholar
  154. 154.
    Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007;55:498–510.PubMedCrossRefGoogle Scholar
  155. 155.
    Donaghue KC, Chiarelli F, Trotta D, Allgrove J, Dahl-Jorgensen K. ISPAD clinical practice consensus guidelines 2006–2007. Microvascular and macrovascular complications. Pediatr Diabetes 2007;8:163–170.PubMedCrossRefGoogle Scholar
  156. 156.
    Silverstein J, Klingensmith G, Copeland K, Plotnick L, Kaufman F, Laffel L, Deeb L, Grey M, Anderson B, Holzmeister LA, Clark N. Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes Care 2005;28:186–212.PubMedCrossRefGoogle Scholar
  157. 157.
    Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 2003;111:1416–1421.PubMedCrossRefGoogle Scholar
  158. 158.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296–1305.PubMedCrossRefGoogle Scholar
  159. 159.
    Nag S, Bilous R, Kelly W, Jones S, Roper N, Connolly V. All-cause and cardiovascular mortality in diabetic subjects increases significantly with reduced estimated glomerular filtration rate (eGFR): 10 years’ data from the South Tees Diabetes Mortality study. Diabet Med 2007;24:10–17.PubMedCrossRefGoogle Scholar
  160. 160.
    Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 2003;52:1036–1040.PubMedCrossRefGoogle Scholar
  161. 161.
    MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004;27:195–200.PubMedCrossRefGoogle Scholar
  162. 162.
    Perkins BA, Ficociello LH, Ostrander BE, Silva KH, Weinberg J, Warram JH, Krolewski AS. Microalbuminuria and the Risk for Early Progressive Renal Function Decline in Type 1 Diabetes. J Am Soc Nephrol, 2007;18:1353–1361.Google Scholar
  163. 163.
    Sandahl Christiansen J, Christensen CK, Hermansen K, Pedersen EB, Mogensen CE. Enhancement of glomerular filtration rate and renal plasma flow by oral glucose load in well controlled insulin-dependent diabetics. Scand J Clin Lab Invest 1986;46:265–272.PubMedCrossRefGoogle Scholar
  164. 164.
    Christiansen JS, Gammelgaard J, Frandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia 1981;20:451–456.PubMedGoogle Scholar
  165. 165.
    Mogensen CE. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest 1986;46:201–206.PubMedCrossRefGoogle Scholar
  166. 166.
    Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med 2006;354:2473–2483.PubMedCrossRefGoogle Scholar
  167. 167.
    Gretz N, Schock D, Sadick M, Pill J. Bias and precision of estimated glomerular filtration rate in children. Pediatr Nephrol 2007;22:167–169.PubMedCrossRefGoogle Scholar
  168. 168.
    Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 1976;51:875–878.PubMedCrossRefGoogle Scholar
  169. 169.
    Schwartz GJ, Haycock GB, Edelmann CM Jr., Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976;58:259–263.PubMedGoogle Scholar
  170. 170.
    Haycock GB. Creatinine, body size and renal function. Pediatr Nephrol 1989;3:22–24.PubMedCrossRefGoogle Scholar
  171. 171.
    Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function – a meta-analysis. Nephrol Dial Transplant 2006;21:2446–2451.PubMedCrossRefGoogle Scholar
  172. 172.
    Susztak K, Bottinger EP. Diabetic nephropathy: a frontier for personalized medicine. J Am Soc Nephrol 2006;17:361–367.PubMedCrossRefGoogle Scholar
  173. 173.
    Thongboonkerd V. Searching for novel biomarkers and New Therapeutic targets of diabetic nephropathy using proteomics approaches. Contrib Nephrol 2008;160:37–52.PubMedCrossRefGoogle Scholar
  174. 174.
    Merchant ML, Klein JB. Proteomics and diabetic nephropathy. Semin Nephrol 2007;27:627–636.PubMedCrossRefGoogle Scholar
  175. 175.
    Iyengar SK, Freedman BI, Sedor JR. Mining the genome for susceptibility to diabetic nephropathy: the role of large-scale studies and consortia. Semin Nephrol 2007;27:208–222.PubMedCrossRefGoogle Scholar
  176. 176.
    Meier M, Kaiser T, Herrmann A, Knueppel S, Hillmann M, Koester P, Danne T, Haller H, Fliser D, Mischak H. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J Diabetes Complications 2005;19:223–232.PubMedCrossRefGoogle Scholar
  177. 177.
    Otu HH, Can H, Spentzos D, Nelson RG, Hanson RL, Looker HC, Knowler WC, Monroy M, Libermann TA, Karumanchi SA, Thadhani R. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care 2007;30:638–643.PubMedCrossRefGoogle Scholar
  178. 178.
    Holl RW, Swift PG, Mortensen HB, Lynggaard H, Hougaard P, Aanstoot HJ, Chiarelli F, Daneman D, Danne T, Dorchy H, Garandeau P, Greene S, Hoey HM, Kaprio EA, Kocova M, Martul P, Matsuura N, Robertson KJ, Schoenle EJ, Sovik O, Tsou RM, Vanelli M, Aman J. Insulin injection regimens and metabolic control in an international survey of adolescents with type 1 diabetes over 3 years: results from the Hvidore study group. Eur J Pediatr 2003;162:22–29.PubMedCrossRefGoogle Scholar
  179. 179.
    Bryden KS, Neil A, Mayou RA, Peveler RC, Fairburn CG, Dunger DB. Eating habits, body weight, and insulin misuse. A longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care 1999;22:1956–1960.PubMedCrossRefGoogle Scholar
  180. 180.
    Lovell HG. Angiotensin converting enzyme inhibitors in normotensive diabetic patients with microalbuminuria. Cochrane Database Syst Rev 2001;CD002183.Google Scholar
  181. 181.
    Strippoli GF, Craig M, Craig JC. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev 2005;CD004136.Google Scholar
  182. 182.
    Strippoli GF, Craig M, Deeks JJ, Schena FP, Craig JC. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ 2004;329:828.PubMedCrossRefGoogle Scholar
  183. 183.
    Cook J, Daneman D, Spino M, Sochett E, Perlman K, Balfe JW. Angiotensin converting enzyme inhibitor therapy to decrease microalbuminuria in normotensive children with insulin-dependent diabetes mellitus. J Pediatr 1990;117:39–45.PubMedCrossRefGoogle Scholar
  184. 184.
    Rudberg S, Aperia A, Freyschuss U, Persson B: Enalapril reduces microalbuminuria in young normotensive type 1 (insulin-dependent) diabetic patients irrespective of its hypotensive effect. Diabetologia 1990;33:470–476.PubMedCrossRefGoogle Scholar
  185. 185.
    Rudberg S, Osterby R, Bangstad HJ, Dahlquist G, Persson B. Effect of angiotensin converting enzyme inhibitor or beta blocker on glomerular structural changes in young microalbuminuric patients with Type I (insulin-dependent) diabetes mellitus. Diabetologia 1999;42:589–595.PubMedCrossRefGoogle Scholar
  186. 186.
    Yuksel H, Darcan S, Kabasakal C, Cura A, Mir S, Mavi E. Effect of enalapril on proteinuria, phosphaturia, and calciuria in insulin-dependent diabetes. Pediatr Nephrol 1998;12:648–650.PubMedCrossRefGoogle Scholar
  187. 187.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7–22.Google Scholar
  188. 188.
    Keane WF, Kasiske BL, O’Donnell MP, Kim Y. The role of altered lipid metabolism in the progression of renal disease: experimental evidence. Am J Kidney Dis 1991;17:38–42.PubMedGoogle Scholar
  189. 189.
    Maahs DM, Maniatis AK, Nadeau K, Wadwa RP, McFann K, Klingensmith GJ. Total cholesterol and high-density lipoprotein levels in pediatric subjects with type 1 diabetes mellitus. J Pediatr 2005;147:544–546.PubMedCrossRefGoogle Scholar
  190. 190.
    Maahs DM, Wadwa RP, McFann K, Nadeau K, Williams MR, Eckel RH, Klingensmith GJ. Longitudinal lipid screening and use of lipid-lowering medications in pediatric type 1 diabetes. J Pediatr 2007;150:146–150, e141–e142.PubMedCrossRefGoogle Scholar
  191. 191.
    Schwab KO, Doerfer J, Hecker W, Grulich-Henn J, Wiemann D, Kordonouri O, Beyer P, Holl RW. Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV). Diabetes Care 2006;29:218–225.PubMedCrossRefGoogle Scholar
  192. 192.
    Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996;124:627–632.PubMedGoogle Scholar
  193. 193.
    Chiarelli F, Casani A, Verrotti A, Morgese G, Pinelli L. Diabetic nephropathy in children and adolescents: a critical review with particular reference to angiotensin-converting enzyme inhibitors. Acta Paediatr Suppl 1998;425:42–45.PubMedCrossRefGoogle Scholar
  194. 194.
    Masson EA, MacFarlane IA, Priestley CJ, Wallymahmed ME, Flavell HJ. Failure to prevent nicotine addition in young people with diabetes. Arch Dis Child 1992;67:100–102.PubMedCrossRefGoogle Scholar
  195. 195.
    Fukami K, Yamagishi S, Ueda S, Okuda S. Novel therapeutic targets for diabetic nephropathy. Endocr Metab Immune Disord Drug Targets 2007;7:83–92.PubMedCrossRefGoogle Scholar
  196. 196.
    Abaterusso C, Gambaro G. The role of glycosaminoglycans and sulodexide in the treatment of diabetic nephropathy. Treat Endocrinol 2006;5:211–222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Loredana Marcovecchio
  • Francesco Chiarelli

There are no affiliations available

Personalised recommendations