Encyclopedia of Applied and Computational Mathematics

2015 Edition
| Editors: Björn Engquist

Visualization

  • Christopher R. Johnson
Reference work entry
DOI: https://doi.org/10.1007/978-3-540-70529-1_368

Synonyms

Scalar field visualization; Vector field visualization; Visualization software

Introduction

Computers are now extensively used throughout science, engineering, and medicine. Advances in computational geometric modeling, imaging, and simulation allow researchers to build and test models of increasing complexity and thus to generate unprecedented amounts of data. As noted in the NIH-NSF Visualization Research Challenges report, to effectively understand and make use of the vast amounts of information being produced is one of the greatest scientific challenges of the twenty-first century [1]. Visualization, namely, helping researchers explore measured or simulated data to gain insight into structures and relationships within the data, will be critical in achieving this goal and is fundamental to understanding models of complex phenomena. In this brief chapter, I will highlight visualization techniques for two common scientific data types, scalar fields, and vector fields with...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

The author would like to thank the many people who contributed to this article including Charles Hansen, Gordon Kindlmann, Joe Kniss, Rob MacLeod, Steve Parker, Yarden Livnat, and Xavier Tricoche. This work was funded by grants from the NSF,DOE SciDAC, and NETL, the NIH NIGMS 8 P41 GM103545-14, and the King Abdullah University for Science and Technology.

References

  1. 1.
    Johnson, C.R., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.: NIH-NSF Visualization Research Challenges Report. http://tab.computer.org/vgtc/vrc/index.html (2006)
  2. 2.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object Oriented Approach to Graphics, chap. 6. Kitware, Clifton Park/New York (2003)Google Scholar
  3. 3.
    Hansen, C.D., Johnson, C.R.: The Visualization Handbook. Elsevier, Amsterdam (2005)Google Scholar
  4. 4.
    Kniss, J.M., Kindlmann, G., Hansen, C.D.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)CrossRefGoogle Scholar
  5. 5.
    ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging (SCI) Institute. Download from: http://www.imagevis3d.org (2013)
  6. 6.
    Bernardon, F.F., Callahan, S.P., Comba, J.L.D., Silva, C.T.: Interactive volume rendering of unstructured grids with time-varying scalar fields. In: Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization, Braga, pp. 51–58 (2006)Google Scholar
  7. 7.
    Kniss, J.M., Premoze, S., Ikits, M., Lefohn, A.E., Hansen, C.D., Praun, E.: Gaussian transfer functions for multi-field volume visualization. In: Proceedings of the IEEE Visualization, Seattle, pp. 497–504 (2003)Google Scholar
  8. 8.
    Kindlmann, G.L., Weinstein, D.M., Hart, D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans. Vis. Comput. Graph. 6(2), 124–138 (2000)CrossRefGoogle Scholar
  9. 9.
    Kindlmann, G., Durkin, J.: Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium on Volume Visualization, Durham, pp. 79–86. IEEE, Los Alamitos (1998)Google Scholar
  10. 10.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  11. 11.
    Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for soft objects. Vis. Comput. 2, 227–234 (1986)CrossRefGoogle Scholar
  12. 12.
    Shen, H., Johnson, C.R.: Sweeping simplicies: a fast iso-surface extraction algorithm for unstructured grids. In: Proceedings of the IEEE Visualization, Atlanta, pp. 143–150 (1995)Google Scholar
  13. 13.
    Shen, H.W., Hansen, C.D., Livnat, Y., Johnson, C.R.: Isosurfacing in span space with utmost efficiency (ISSUE). In: Proceedings of the IEEE Visualization, San Francisco, pp. 287–294. IEEE, Los Alamitos (1996)Google Scholar
  14. 14.
    Livnat, Y., Shen, H., Johnson, C.R.: A near optimal isosurface extraction algorithm using the span space. IEEE Trans. Vis. Comp. Graph. 2(1), 73–84 (1996)CrossRefGoogle Scholar
  15. 15.
    Cignoni, P., Montani, C., Puppo, E., Scopigno, R.: Optimal isosurface extraction from irregular volume data. In: Proceedings of the IEEE 1996 Symposium on Volume Visualization, San Francisco. ACM, New York (1996)Google Scholar
  16. 16.
    Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of the IEEE Visualization, Phoenix, pp. 167–173 (1997)Google Scholar
  17. 17.
    Livnat, Y., Tricoche, X.: Interactive point based isosurface extraction. In: Proceedings of IEEE Visualization 2004 pp. 457–464 (2004)Google Scholar
  18. 18.
    Mallo, O., Peikert, R., Sigg, C., Saldo, F.: Illuminated streamlines revisited. In: Proceedings of the IEEE Visualization, Minneapolis, pp. 19–26 (2005)Google Scholar
  19. 19.
    Li, G., Bordoloi, U.D., Shen, H.: Chameleon: An interactive texture-based rendering framework for visualizing three-dimensional vector fields. In: Proceedings of the IEEE Visualization, Seattle, p. 32, (2003)Google Scholar
  20. 20.
    Hultquist, J.P.M.: Constructing stream surfaces in steady 3D vector fields. In: Proceedings of the IEEE Visualization, Boston, pp. 171–178 (1992)Google Scholar
  21. 21.
    Garth, C., Tricoche, X., Salzbrunn, T., Bobach, T., Scheuermann, G.: Surface techniques for vortex visualization. In: Proceedings of the Joint Eurographics – IEEE TCVG Symposium on Visualization, Konstanz, pp. 155–164 (2004)Google Scholar
  22. 22.
    Erlebacher, G., Weiskopf, D.: Flow textures: high-resolution flow visualization. In: Hansen, C.D., Johnson, C.R. (eds.) Visualization Handbook, pp. 279–294. Elsevier/Academic, Amsterdam (2005)CrossRefGoogle Scholar
  23. 23.
    Cabral, B., Leedom, C.: Imaging vector fields using line integral convolution. In: Proceedings of the SIGGRAPH, San Diego, pp. 263–270. ACM, New York (1993)Google Scholar
  24. 24.
    Li, G.-S., Tricoche, X., Hansen, C.D.: Gpuflic: Interactive and dense visualization of unsteady flows. In: Data Analysis 2006: Proceedings of the Joint IEEE VGTC and EG Symposium on Visualization (EuroVis), Lisbon, pp. 29–34 (2006)Google Scholar
  25. 25.
    Weiskopf, D., Ertl, T.: A hybrid physical/device space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In: Proceedings of the Graphics Interface, London, pp. 263–270 (2004)Google Scholar
  26. 26.
    Resz-Salama, C., Hastreiter, P., Teitzel, C., Ertl, T.: Interactive exploration of volume line integral convolution based on 3d-texture mapping. In: Proceedings of the IEEE Visualization, San Francisco, pp. 233–240 (1999)Google Scholar
  27. 27.
    Scheuermann, G., Tricoche, X.: Topological methods for flow visualization. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, pp. 341–356. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  28. 28.
    SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI). Download from: http://www.scirun.org (2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher R. Johnson
    • 1
  1. 1.Scientific Computing and Imaging InstituteUniversity of Utah, Warnock Engineering BuildingSalt Lake CityUSA