Skip to main content

Abstract

Lars Leksell designed the Gamma Knife® unit (Figure 58-1 ) from the ground up to be a tool of the neurosurgeon. The physics and engineering choices inherent in the design of the unit is perhaps best considered from the perspective of a surgeon end-user. Of all of the radiosurgical tools, the Gamma Knife is the oldest and best established. Since its first conception by Lars Leksell and Börje Larsson, the system has evolved through several generations of improvements; however the basic principles of the instrument remain primarily unchanged. This chapter will describe the physical principles and method of operation of the Gamma Knife, paying particular attention to the new features and changes found in the recently released Leksell Gamma Knife® Perfexion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this is not as critical an issue for the Perfexion model Gamma Knife as it has a significantly larger available treatment volume. For the Perfexion, the optimal frame placement is generally neutral, with the frame centered on the midline of the head.

  2. 2.

    A reader interested in inverse planning for the Gamma knife may find references [23 25] useful. These methods have met little commercial acceptance in the Gamma Knife community.

  3. 3.

    Note that some institutions use a superposition method to achieve isocenters with intermediate sizes [27].

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 1951;102(4):316–19.

    PubMed  CAS  Google Scholar 

  2. Lindquist C, Kihlstrom L. Department of Neurosurgery, Karolinska Institute: 60 years. Neurosurgery 1996;39(5):1016–21.

    Article  PubMed  CAS  Google Scholar 

  3. Wu A, Lindner G, Maitz AH, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1990;18(4):941–9.

    Article  PubMed  CAS  Google Scholar 

  4. Khan FM. The physics of radiation therapy. Baltimore: Williams and Wilkins; 1984.

    Google Scholar 

  5. Hall EJ. Radiobiology for the radiologist. 3rd ed. London: J. B. Lippincott; 1988.

    Google Scholar 

  6. Buatti JM, Friedman WA, Meeks SL, Bova FJ. The radiobiology of radiosurgery and stereotactic radiotherapy. Med Dosim;1998;23(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  7. Hall EJ, Brenner DJ. The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 1993;25(2):381–5.

    Article  PubMed  CAS  Google Scholar 

  8. Leksell GammaPlan 8.0 online reference manual. 1003197 Rev. 01 ed. Stockholm: Elekta Instrument AB; 2006.

    Google Scholar 

  9. Leksell gamma knife perfexion: system description. Art no 1002703. Stockholm: Elekta, AB; 2006.

    Google Scholar 

  10. Leksell L, Lindquist C, Adler JR, Leksell D, Jernberg B, Steiner L. A new fixation device for the Leksell stereotaxic system. Technical note. J Neurosurg 1987;66(4):626–9.

    Article  PubMed  CAS  Google Scholar 

  11. Mugler JP III, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15(1):152–7.

    Article  PubMed  Google Scholar 

  12. Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993;14(1):47–57.

    PubMed  CAS  Google Scholar 

  13. Held P, Fellner C, Fellner F, Seitz J, Strutz J. MRI of inner ear anatomy using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 1997;70(833):465–72.

    PubMed  CAS  Google Scholar 

  14. Stuckey SL, Harris AJ, Mannolini SM. Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR. AJNR Am J Neuroradiol 1996;17(7):1219–25.

    PubMed  CAS  Google Scholar 

  15. Hlatky R, Jackson EF, Weinberg JS, McCutcheon IE. Intraoperative neuronavigation using diffusion tensor MR tractography for the resection of a deep tumor adjacent to the corticospinal tract. Stereotact Funct Neurosurg 2005;83(5-6):228–32.

    Article  PubMed  Google Scholar 

  16. Litt AW, Kondo N, Bannon KR, Kricheff II. Role of slice thickness in MR imaging of the internal auditory canal. J Comput Assist Tomogr 1990;14(5):717–20.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson CD, Fletcher JG, MacCarty RL, et al. Effect of slice thickness and primary 2D versus 3D virtual dissection on colorectal lesion detection at CT colonography in 452 asymptomatic adults. AJR Am J Roentgenol 2007;189(3):672–80.

    Article  PubMed  Google Scholar 

  18. Snell JW, Sheehan J, Stroila M, Steiner L. Assessment of imaging studies used with radiosurgery: a volumetric algorithm and an estimation of its error. Technical note. J Neurosurg 2006;104(1):157–62.

    Article  PubMed  Google Scholar 

  19. Sumanaweera TS, Adler JR Jr, Napel S, Glover GH. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 1994;35(4):696–703; discussion 694–703.

    Article  PubMed  CAS  Google Scholar 

  20. Worthington C, Hutson K, Boulware R, et al. Computerized tomography cisternography of the trigeminal nerve for stereotactic radiosurgery. Case report. J Neurosurg 2000;93 Suppl 3:169–71.

    PubMed  Google Scholar 

  21. Bednarz G, Downes B, Werner-Wasik M, Rosenwasser RH. Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 2000;46(5):1149–54.

    Article  PubMed  CAS  Google Scholar 

  22. Soderman M, Picard C, Ericson K. An algorithm for correction of distortion in stereotaxic digital subtraction angiography. Neuroradiology 1998;40(5):277–82.

    Article  PubMed  CAS  Google Scholar 

  23. Shepard DM, Ferris MC, Ove R, Ma L. Inverse treatment planning for Gamma Knife radiosurgery. Med Phys 2000;27(12):2748–56.

    Article  PubMed  CAS  Google Scholar 

  24. Wu QJ, Chankong V, Jitprapaikulsarn S, et al. Real-time inverse planning for Gamma Knife radiosurgery. Med Phys 2003;30(11):2988–95.

    Article  PubMed  Google Scholar 

  25. Zhang P, Wu J, Dean D, et al. Plug pattern optimization for gamma knife radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003;55(2):420–7.

    Article  PubMed  Google Scholar 

  26. Morgan-Fletcher SL. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50), ICRU Report 62. Br J Radiol 2001;74(879):294.

    Google Scholar 

  27. Thorsen FA, Ganz JC. Dose planning with the Leksell Gamma Knife: the effect on dose volume of more than one shot at the same target point. Stereotact Funct Neurosurg 1993;61 Suppl 1:151–63.

    Article  PubMed  Google Scholar 

  28. Schlesinger D, Snell J, Sheehan J. Shielding strategies for Gamma Knife surgery of pituitary adenomas. J Neurosurg 2006;105(7):241–8.

    PubMed  Google Scholar 

  29. Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 2000;93 Suppl 3:219–22.

    PubMed  Google Scholar 

  30. Borden JA, Mahajan A, Tsai JS. A quality factor to compare the dosimetry of gamma knife radiosurgery and intensity-modulated radiation therapy quantitatively as a function of target volume and shape. Technical note. J Neurosurg 2000;93 Suppl 3:228–32.

    PubMed  Google Scholar 

  31. Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003;55(5):1409–19.

    Article  PubMed  Google Scholar 

  32. Wu QR, Wessels BW, Einstein DB, Maciunas RJ, Kim EY, Kinsella TJ. Quality of coverage: conformity measures for stereotactic radiosurgery. J Appl Clin Med Phys 2003;4(4):374–81.

    Article  PubMed  Google Scholar 

  33. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg 2006;105(7):194–201.

    PubMed  Google Scholar 

  34. Wagner TH, Bova FJ, Friedman WA, Buatti JM, Bouchet LG, Meeks SL. A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys 2003;57(4):1141–9.

    Article  PubMed  Google Scholar 

  35. Korytko T, Radivoyevitch T, Colussi V, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys 2006;64(2):419–24.

    Article  PubMed  Google Scholar 

  36. Ma L, Li XA, Yu CX. An efficient method of measuring the 4 mm helmet output factor for the Gamma knife. Phys Med Biol 2000;45(3):729–33.

    Article  PubMed  CAS  Google Scholar 

  37. Bilge H, Osen Z, Senkesen O, Kucucuk H, Cakir A, Sengoz M. Determination of output factors for the Leksell gamma knife using ion chamber, thermoluminescence detectors and films. J BUON 2006;11(2):223–7.

    PubMed  CAS  Google Scholar 

  38. Cheung JY, Yu KN, Ho RT, Yu CP. Monte Carlo calculated output factors of a Leksell Gamma Knife unit. Phys Med Biol 1999;44(12):N247–N249.

    Article  PubMed  CAS  Google Scholar 

  39. Sanders M, Sayeg J, Coffey C, Patel P, Walsh J. Beam profile analysis using GafChromic films. Stereotact Funct Neurosurg 1993;61 Suppl 1:124–9.

    Article  PubMed  Google Scholar 

  40. Maryanski MJ, Ibbott GS, Eastman P, Schulz RJ, Gore JC. Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys 1996;23(5):699–705.

    Article  PubMed  CAS  Google Scholar 

  41. Scheib S, Crescenti R, Vogelsanger W, et al. Application of normoxic polymer gels in 3D-dosimetry for radiosurgery. Z Med Phys 2006;16(3):180–7.

    PubMed  Google Scholar 

  42. Watanabe Y, Akimitsu T, Hirokawa Y, Mooij RB, Perera GM. Evaluation of dose delivery accuracy of Gamma Knife by polymer gel dosimetry. J Appl Clin Med Phys 2005;6(3):133–42.

    Article  PubMed  Google Scholar 

  43. Karaiskos P, Petrokokkinos L, Tatsis E, et al. Dose verification of single shot gamma knife applications using VIPAR polymer gel and MRI. Phys Med Biol 2005;50(6):1235–50.

    Article  PubMed  CAS  Google Scholar 

  44. Sandilos P, Tatsis E, Vlachos L, et al. Mechanical and dose delivery accuracy evaluation in radiosurgery using polymer gels. J Appl Clin Med Phys 2006;7(4):13–21.

    PubMed  Google Scholar 

  45. Lindquist C, Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Neurosurgery 2007;61 Suppl 3:130–40; discussion 131–140.

    Article  PubMed  Google Scholar 

  46. Solberg TD, Holly FE, De Salles AA, Wallace RE, Smathers JB. Implications of tissue heterogeneity for radiosurgery in head and neck tumors. Int J Radiat Oncol Biol Phys 1995;32(1):235–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schlesinger, D.J., Yen, C.P., Lindquist, C., Steiner, L. (2009). Gamma Knife: Technical Aspects. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics