Advertisement

18 Hominin Paleodiets: The Contribution of Stable Isotopes

  • Matt Sponheimer
  • Julia Lee-Thorp
Reference work entry

Abstract

Stable isotope ratio analysis is now regularly used to investigate early hominin diets based on the principle that “you are what you eat.” Analysis of collagen from Neanderthals and anatomically modern humans prior to 20 ka has shown them to be significantly enriched in 15N compared to contemporaneous carnivores and herbivores. This suggests that animal foods were a dominant component of their diets, although it must be borne in mind that collagen δ15N can underemphasize the importance of plant foods. Carbon isotope analysis of the enamel mineral of South African australopiths and early Homo has revealed that these taxa consumed ∼30% C4 foods such as tropical grasses, sedges, or animals that ate these foods. Moreover, the australopiths are characterized by remarkably variable δ13C values. Chimpanzees, in contrast, are nearly pure C3 consumers even in environments with abundant C4 vegetation. These data suggest that when confronted with increasingly open areas, chimpanzees continue to exploit the foods that are most abundant in forest environments, whereas australopiths utilized novel C4 resources in addition to forest foods.

Keywords

Stable Isotope Stable Isotope Analysis Animal Food Bone Collagen Dietary Breadth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aiello LC, Wheeler P (1995) The expensive tissue hypothesis. Curr Anthropol 36: 199–221CrossRefGoogle Scholar
  2. Altmann SA, Altmann J (1970) Baboon ecology. University of Chicago Press, ChicagoGoogle Scholar
  3. Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for stable carbon and nitrogen isotope analysis. J Archaeol Sci 17: 431–451CrossRefGoogle Scholar
  4. Ambrose SH (1998) Prospects for stable isotopic analysis of later Pleistocene hominid diets in West Asia and Europe. In: Akazawa T, Aoki K, Bar-Yosef O (eds) Origin of Neanderthals and humans in West Asia. Plenum Press, New York, pp 277–289Google Scholar
  5. Ambrose SH, De Niro MJ (1986) The isotopic ecology of East African Mammals. Oecologia 69: 395–406CrossRefGoogle Scholar
  6. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G (eds) Prehistoric human bone: Archaeology at the molecular level. Springer-Verlag, Berlin, pp 1–37CrossRefGoogle Scholar
  7. Ayliffe LK, Chivas AR (1990) Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a paleoenvironmental recorder. Geochim Cosmochim Acta 54: 2603–2609CrossRefGoogle Scholar
  8. Backwell LR, d'Errico F (2001) Evidence of termite foraging by Swartkrans early hominids. Proc Natl Acad Sci USA 98: 1358–1363PubMedCentralPubMedCrossRefGoogle Scholar
  9. Binford L (1981) Bones. Academic Press, New YorkGoogle Scholar
  10. Blumenschine RJ (1987) Characteristics of an early hominid scavenging niche. Curr Anthropol 28: 383–407CrossRefGoogle Scholar
  11. Bocherens H, Fizet M, Mariotti A, Lange-Badre B, Vandermeersch B, Borel J-P, Bellon G (1991) Isotopic biochemistry (13C, 15N) of fossil vertebrate collagen: Implications for the study of fossil food web including Neandertal man. J Hum Evol 20: 481–492CrossRefGoogle Scholar
  12. Bocherens H, Billiou D, Patou-Mathis M, Bonjean D, Otte M, Mariotti A (1997) Isotopic biogeochemistry (13C, 15N) of fossil mammal collagen from Scladina cave (Sclayn, Belgium). Quat Res 48: 370–380CrossRefGoogle Scholar
  13. Bocherens H, Billiou D, Mariotti A, Patou-Mathis M, Otte M, Bonjean D, Toussaint M (1999) Palaeoenvironmental and palaeodietary implications of isotopic biogeochemistry of last interglacial Neandertal and mammal bones in scladina cave (Belgium). J Archaeol Sci 26: 599–607CrossRefGoogle Scholar
  14. Bocherens H, Billiou D, Mariotti A, Patou-Mathis M, Otte M, Bonjean D, Toussaint M (2001) New isotopic evidence for dietary habits of Neandertals from Belgium. J Hum Evol 40: 497–505PubMedCrossRefGoogle Scholar
  15. Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B (2005) Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: Review and use of a multi-source mixing model. J Hum Evol 49: 71–87PubMedCrossRefGoogle Scholar
  16. Boutton TW, Arshad MA, Tieszen LL (1983) Stable isotope analysis of termite food habits in East African grasslands. Oecologia 59: 1–6PubMedCrossRefGoogle Scholar
  17. Braack L, Kryger P (2003) Insects and savanna heterogeneity. In: du Toit JT, Rogers KH, Biggs HC (eds) The kruger experience: Ecology and management of savanna heterogeneity. Island Press, Washington, pp 263–275Google Scholar
  18. Brain CK (1981) The hunters or the hunted? University of Chicago Press, ChicagoGoogle Scholar
  19. Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A, Ahounta D, Beauvilain A, Blondel C, Bocherens H, Boisserie JR, De Bonis L, Coppens Y, Dejax J, Denys C, Duringer P, Eisenmann V, Fanone G, Fronty P, Geraads D, Lehmann T, Lihoreau F, Louchart A, Mahamat A, Merceron G, Mouchelin G, Otero O, Pelaez Campomanes P, Ponce De Leon M, Rage JC, Sapanet M, Schuster M, Sudre J, Tassy P, Valentin X, Vignaud P, Viriot L, Zazzo A, Zollikofer C (2002) A new hominid from the upper miocene of chad, central Africa. Nature 418: 145–151PubMedCrossRefGoogle Scholar
  20. Carruthers V (1997) The wildlife of southern Africa. Southern Book Publishers, Halfway HouseGoogle Scholar
  21. Carter ML (2001) Sensitivity of stable isotopes (13C, 15N, and 18O) in bone to dietary specialization and niche separation among sympatric primates in Kibale National Park, Uganda. Ph.D. dissertation, University of ChicagoGoogle Scholar
  22. Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347–363CrossRefGoogle Scholar
  23. Cerling TE, Harris JM, Passey BH (2003) Diets of East African bovidae based on stable isotope analysis. J Mammal 84: 456–470CrossRefGoogle Scholar
  24. Clarke R (1994) Advances in understanding the craniofacial anatomy of South African early hominids. In: Corruccini R, Ciochon R (eds) Integrative paths to the past. Prentice Hall, Englewood Cliffs, pp 205–222Google Scholar
  25. Codron DM (2003) Dietary ecology of chacma baboons (Papio ursinus (Kerr, 1792)) and Pleistocene cercopithecoidea in savanna environments of South Africa. M.Sc. thesis, University of Cape TownGoogle Scholar
  26. Conklin-Brittain NL, Wrangham RW, Smith CC (2002) A two-stage model of increased dietary quality in early hominid evolution: The role of fiber. In: Ungar PS, Teaford MF (eds) Human diet: Its origin and evolution. Bergin & Garvey, Westport, pp 61–76Google Scholar
  27. Daegling DJ, Grine FE (1999) Occlusal microwear in Papio ursinus: The effects of terrestrial foraging on dental enamel. Primates 40: 559–572CrossRefGoogle Scholar
  28. Dart RA (1957) The osteodontokeratic culture of Australopithecus prometheus. Trans Mus Mem 10: 1–105Google Scholar
  29. Defelice MS (2002) Yellow nutsedge Cyperus esculentus L.—Snack food of the gods. Weed Technol 16: 901–907CrossRefGoogle Scholar
  30. de Heinzelin J, Clark JD, White TD, Hart W, Renne P, Wolde Gabriel G, Beyene Y, Vrba E (1999) Environment and behavior of 2.5-million-year-old bouri hominids. Science 284: 625–629PubMedCrossRefGoogle Scholar
  31. deMenocal PB (1995) Plio-Pleistocene African climate. Science 270: 53–59PubMedCrossRefGoogle Scholar
  32. Deocampo DM, Blumenschine RJ, Ashley GM (2002) Wetland diagenesis and traces of early hominids, Olduvai Gorge, Tanzania. Quat Res 57: 271–281CrossRefGoogle Scholar
  33. Doran DM, McNeilage A (1998) Gorilla ecology and behavior. Evol Anthropol 6: 120–131CrossRefGoogle Scholar
  34. Dufour E, Bocherens H, Mariotti A (1999) Palaeodietary implications of isotopic variability in Eurasian lacustrine fish. J Archaeol Sci 26: 617–627CrossRefGoogle Scholar
  35. Dunbar RIM (1983) Theropithecines and hominids: Contrasting solutions to the same ecological problem. J Hum Evol 12: 647–658CrossRefGoogle Scholar
  36. Eaton SB, Konner MJ (1985) Paleolithic nutrition. N Engl J Med 312: 283–289PubMedCrossRefGoogle Scholar
  37. Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76: 562–566CrossRefGoogle Scholar
  38. Ellery WN, Ellery K, Rogers KH, McCarthy TS (1995) The role of Cyperus papyrus L. in channel blockage and abandonment in the northeastern Okavango Delta, Botswana. Afr J Ecol 33: 2549CrossRefGoogle Scholar
  39. Feibel CS (1997) Debating the environmental factors in hominid evolution. GSA Today 7: 1–7Google Scholar
  40. Fizet M, Mariotti A, Bocherens H, Lange-Badre B, Vandermeersch B, Borel JP, Bellon G (1995) Effect of diet, physiology and climate on carbon and nitrogen isotopes of collagen in a late Pleistocene anthropic paleoecosystem (France, Charente, Marillac). J Archaeol Sci 22: 67–79CrossRefGoogle Scholar
  41. Fleagle JG (1999) Primate adaptation and evolution, 2nd edn. Academic Press, New YorkGoogle Scholar
  42. Goodall J (1986) The chimpanzees of gombe. Cambridge University Press, CambridgeGoogle Scholar
  43. Grine FE (1981) Trophic differences between gracile and robust australopithecines. S Afr J Sci 77: 203–230Google Scholar
  44. Grine FE (1986) Dental evidence for dietary differences in Australopithecus and Paranthropus: A quantitative analysis of permanent molar microwear. J Hum Evol 15: 783–822CrossRefGoogle Scholar
  45. Grine FE, Kay RF (1988) Early hominid diets from quantitative image analysis of dental microwear. Nature 333: 765–768PubMedCrossRefGoogle Scholar
  46. Haile-Selassie Y, Suwa G, White TD (2004) Late Miocene teeth from middle awash, ethiopia, and early hominid dental evolution. Science 303: 1503–1505PubMedCrossRefGoogle Scholar
  47. Hamilton WJ (1987) Omnivorous primate diets and human overconsumption of meat. In: Harris M, Ross EB (eds) Food and evolution: Toward a theory of human food habits. Temple University Press, Philadelphia, pp 117–132Google Scholar
  48. Harding RSO (1976) Ranging patterns of a troop of baboons (Papio anubis) in Kenya. Folia Primatol 25: 143PubMedCrossRefGoogle Scholar
  49. Hatley T, Kappelman J (1980) Bears, pigs, and Plio-Pleistocene hominids: Case for exploitation of belowground food resources. Hum Ecol 8: 371–387CrossRefGoogle Scholar
  50. Hay RL (1976) Geology of the Olduvai Gorge. University of California Press, BerkeleyGoogle Scholar
  51. Hesla ABI, Tieszen LL, Imbaba SK (1982) A systematic survey of C3 and C4 photosynthesis in the cyperaceae of Kenya, East Africa. Photosynthetica 16: 196–205Google Scholar
  52. Hoppe KA, Koch PL, Furutani TT (2003) Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int J Osteoarchaeol 13: 20–28CrossRefGoogle Scholar
  53. Hylander WL (1975) Incisor size and diet in anthropoids with special reference to Cercopithecoidea. Science 189: 1095–1098PubMedCrossRefGoogle Scholar
  54. Jolly CJ (1970) The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man 5: 5–26CrossRefGoogle Scholar
  55. Jones AM, O'Connell TC, Young ED, Scott K, Buckingham CM, Iacumin P, Brasier MD (2001) Biogeochemical data from well preserved 200 ka collagen and skeletal remains. Earth Planet Sci Lett 193: 143–149CrossRefGoogle Scholar
  56. Katzenberg MA, Weber A (1999) Stable isotope ecology and palaeodiet in the lake baikal region of Siberia. J Archaeol Sci 26: 651–660CrossRefGoogle Scholar
  57. Kay RF (1985) Dental evidence for the diet of Australopithecus. Annu Rev Anthropol 14: 315–341CrossRefGoogle Scholar
  58. Kimbel WH, White TD (1988) Variation, sexual dimorphism, and taxonomy of Australopithecus. In: Grine FE (ed) Evolutionary history of the “robust” Australopithecines. Aldine de Gruyter, New York, pp 175–192Google Scholar
  59. Kohn MJ, Schoeninger MJ, Valley JW (1996) Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochim et Cosmochim Acta 60: 3889–3896CrossRefGoogle Scholar
  60. Leakey LSB, Tobias PV, Napier JR (1964) A new species of genus Homo from Olduvai Gorge. Nature 202: 7–9PubMedCrossRefGoogle Scholar
  61. Lee R (1979) The !Kung San: Men, women, and work in a foraging society. Cambridge University Press, CambridgeGoogle Scholar
  62. Lee-Thorp JA (1989) Stable carbon isotopes in deep time: The diets of fossil fauna and hominids. Ph.D. thesis, University of Cape TownGoogle Scholar
  63. Lee-Thorp JA (2000) Preservation of biogenic carbon isotope signals in Plio-Pleistocene bone and tooth mineral. In: Ambrose S, Katzenberg KA (eds) Biogeochemical approaches to paleodietary analysis. Plenum Palliders NY, pp 89–116Google Scholar
  64. Lee-Thorp JA, Sponheimer M (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol 22: 208–216CrossRefGoogle Scholar
  65. Lee-Thorp JA, van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83: 712–715Google Scholar
  66. Lee-Thorp JA, van der Merwe NJ, Brain CK (1989a) Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. J Hum Evol 18: 183–190CrossRefGoogle Scholar
  67. Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989b) Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16: 585–599CrossRefGoogle Scholar
  68. Lee-Thorp JA, van der Merwe NJ, Brain CK (1994) Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. J Hum Evol 27: 361–372CrossRefGoogle Scholar
  69. Lee-Thorp JA, Manning L, Sponheimer M (1997) Exploring problems and opportunities offered by down-scaling sample sizes for carbon isotope analyses of fossils. Bull Soc Geol France 168: 767–773Google Scholar
  70. Lee-Thorp JA, Thackeray JF, van der Merwe N (2000) The hunters and the hunted revisited. J Hum Evol 39: 565–576PubMedCrossRefGoogle Scholar
  71. Lee-Thorp JA, Sponheimer M, van der Merwe NJ (2003) What do stable isotopes tell us about hominin diets. Int J Osteoarchaeol 13: 104–113CrossRefGoogle Scholar
  72. Le Geros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, ParisGoogle Scholar
  73. Lockwood CA (1997) Variation in the face of Australopithecus africanus and other African hominoids. Ph.D. dissertation, University of the Witwatersrand, JohannesburgGoogle Scholar
  74. Luyt J, Lee-Thorp JA (2003) Carbon isotope ratios of Sterkfontein fossils indicate a marked shift to open environments ca. 1.7 Ma. S Afr J Sci 99: 271–273Google Scholar
  75. Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  76. McGrew WC (1992) Chimpanzee material culture: Implications for human evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  77. McGrew WC, Baldwin PJ, Tutin CE (1981) Chimpanzees in a hot, dry and open habitat: Mt Assirik, Senegal, West Africa. J Hum Evol 10: 227–244CrossRefGoogle Scholar
  78. McGrew WC, Sharman MJ, Baldwin PJ, Tutin CEG (1982) On early hominid plant-food niches. Curr Anthropol 23: 213–214Google Scholar
  79. Mellars P (1989) Major issues in the emergence of modern humans. Curr Anthropol 30: 349–385CrossRefGoogle Scholar
  80. Milton K (1999) A hypothesis to explain the role of meat-eating in human evolution. Evol Anthropol 8: 11–21CrossRefGoogle Scholar
  81. Milton K (2002) Hunter–gatherer diets: Wild foods signal relief from diseases of affluence. In: Ungar PS, Teaford MF (eds) Human diet: Its origin and evolution. Bergin & Garvey, Westport, pp 111–122Google Scholar
  82. Minagawa M, Wada E (1984) Step-wise enrichment of 15N along food chains: Further evidence and the relationship between δ15N and animal age. Geochim et Cosmochim Acta 48: 1135–1140CrossRefGoogle Scholar
  83. Moggi-Cecchi J, Tobias PV, Beynon AD (1998) The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein, South Africa. Am J Phys Anthropol 106: 425–466PubMedCrossRefGoogle Scholar
  84. Nystrom P, Phillips-Conroy JE, Jolly CJ (2004) Dental Microwear in anubis and hybrid baboons (Papic humidryas, sensa lato) living in the Awash National Park, Ethiopia. Am J Phys Anthropol 125: 279–291Google Scholar
  85. O'Connell JF, Hawkes K, Blurton Jones NG (1999) Grandmothering and the evolution of Homo erectus. J Hum Evol 36: 461–485PubMedCrossRefGoogle Scholar
  86. Passey B, Robinson T, Ayliffe L, Cerling T, Sponheimer M, Dearing MD, Roeder BL, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J Archaeol Sci 32: 1459–1470CrossRefGoogle Scholar
  87. Peters CR, Vogel JC (2005) Africa's wild C4 plant foods and possible early hominid diets. J Hum Evol 48: 219–236PubMedCrossRefGoogle Scholar
  88. Pettitt PB, Richards MP, Maggi R, Formicola V (2003) The Gravettian burial known as the Prince (‘Il Principe’): New evidence for his age and diet. Antiquity 95: 15–19CrossRefGoogle Scholar
  89. Prentice ML, Denton GH (1988) The deep-sea oxygen isotope record, the global ice sheet system and hominid evolution. In: Grine FE (ed) Evolutionary history of the “Robust” Australopithecines. Aldine de Gruyter, New York, pp 383–403Google Scholar
  90. Puech PF, Cianfarani F, Albertini H (1986) Dental microwear features as an indicator for plant food in early hominids: A preliminary study of enamel. Hum Evol 1: 507–515CrossRefGoogle Scholar
  91. Rak Y (1983) The Australopithecine face. Academic Press, New YorkCrossRefGoogle Scholar
  92. Reed K (1997) Early hominid evolution and ecological change through the African Plio-Pleistocene. J Hum Evol 32: 289–322PubMedCrossRefGoogle Scholar
  93. Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 26: 717–722CrossRefGoogle Scholar
  94. Richards MP, Pettitt PB, Trinkaus E, Smith FH, Paunovic M, Karavanic I (2000) Neanderthal diet at Vindija and Neanderthal predation: The evidence from stable isotopes. Proc Natl Acad Sci USA 97: 7663–7666PubMedCentralPubMedCrossRefGoogle Scholar
  95. Richards MP, Pettett PB, Stiner MC, Trinkaus E (2001) Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc Natl Acad Sci USA 98: 6528–6532PubMedCentralPubMedCrossRefGoogle Scholar
  96. Robbins CT, Felicetti LA, Sponheimer M (2005) Evaluating nitrogen isotope discrimination relative to dietary nitrogen in mammals and birds. Oecologia 144: 534–540PubMedCrossRefGoogle Scholar
  97. Robinson JT (1954) Prehominid dentition and hominid evolution. Evolution 8: 324–334CrossRefGoogle Scholar
  98. Rosenberger A (1992) Evolution of feeding niches in New World monkeys. Am J Phys Anthropol 88: 525–562PubMedCrossRefGoogle Scholar
  99. Rosenberger AJ, Kinzey WG (1976) Functional patterns of molar occlusion in platyrrhine primates. Am J Phys Anthropol 45: 197–281CrossRefGoogle Scholar
  100. Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, New York, pp 313–373CrossRefGoogle Scholar
  101. Schoeninger MJ, De Niro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimet Cosmochim Acta 48: 625–639CrossRefGoogle Scholar
  102. Schoeninger MJ, Moore J, Sept JM (1999) Subsistence strategies of two savanna chimpanzee populations: The stable isotope evidence. Am J Primatol 49: 297–314PubMedCrossRefGoogle Scholar
  103. Schulting RJ, Trinkaus E, Higham T, Hedges R, Richards M, Cardy B (2005) A mid-Upper Palaeolithic human humerus from Eel Point, SouthWales, UK. J Hum Evol 48: 493–505PubMedCrossRefGoogle Scholar
  104. Sealy JC, van der Merwe NJ, Lee-Thorp JA, Lanham JL (1987) Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing. Geochim et Cosmochim Acta 51: 2707–2717CrossRefGoogle Scholar
  105. Semaw S, Renne P, Harris JWK, Feibel CS, Bernor RL, Fesseha N, Mowbray K (1997) 2.5-million-year-old stone tools from Gona, Ethiopia. Nature 385: 333–336PubMedCrossRefGoogle Scholar
  106. Senut B, Pickford M, Gommery D, Mein P, Cheboi C, Coppens Y (2001) First hominid from the Miocene (Lukeino Formation, Kenya. Comptes Rendus des Seances de l'Academie des Sciences 332: 137–144Google Scholar
  107. Sillen A, Hall G, Armstrong R (1995) Strontium calcium ratios (Sr/Ca) and strontium isotopic ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. J Hum Evol 28: 277–285CrossRefGoogle Scholar
  108. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47: 380–384PubMedCentralPubMedCrossRefGoogle Scholar
  109. Smithers RHN (1983) The mammals of the Southern African subregion. University of Pretoria Press, PretoriaGoogle Scholar
  110. Speth JD, Tchernov E (2001) Neanderthal hunting and meat-processing in the Near East: Evidence from Kebara Cave (Israel). In: Stanford, CB Bunn HT (eds) Meat-eating and human evolution. Oxford University Press, Oxford, pp 52–72Google Scholar
  111. Sponheimer M (1999) Isotopic ecology of the Makapansgat Limeworks Fauna. Ph.D. dissertation, Rutgers UniversityGoogle Scholar
  112. Sponheimer M, Lee-Thorp JA (1999a) Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283: 368–370PubMedCrossRefGoogle Scholar
  113. Sponheimer M, Lee-Thorp JA (1999b) The alteration of enamel carbonate environments during fossilisation. J Archaeol Sci 26: 143–150CrossRefGoogle Scholar
  114. Sponheimer M, Lee-Thorp JA (1999c) The ecological significance of oxygen isotopes in enamel carbonate. J Archaeol Sci 26: 723–728CrossRefGoogle Scholar
  115. Sponheimer M, Lee-Thorp JA (2001) The oxygen isotope composition of mammalian enamel carbonate: A case study from Morea Estate, Mpumalanga Province, South Africa. Oecologia 126: 153–157CrossRefGoogle Scholar
  116. Sponheimer M, Lee-Thorp JA (2003) Differential resource utilization by extant great apes and Australopithecines: Towards solving the C4 conundrum. Comp Biochem Physiol 136: 27–34CrossRefGoogle Scholar
  117. Sponheimer M, Reed K, Lee-Thorp JA (1999) Combining isotopic and ecomorphological data to refine bovid paleodietary recontruction: A case study from the Makapansgat Limeworks hominin locality. J Hum Evol 34: 277–285Google Scholar
  118. Sponheimer M, Lee-Thorp JA, Reed K (2001) Isotopic ecology of the Makapansgat Limeworks Perissodactyla. S Afr J Sci 97: 327–329Google Scholar
  119. Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, West A, Passey B, Cerling T, Dearing D, Ehleringer J (2003a) Nitrogen isotopes mammalian herbivores: Hair 15N values from a controlled-feeding study. Int J Osteoarchaeol 13: 80–87CrossRefGoogle Scholar
  120. Sponheimer M, Lee-Thorp J, De Ruiter D, Smith J, van der Merwe N, Reed K, Ayliffe L, Heidelberger C, Marcus W (2003b) Diets of southern African Bovidae: Stable isotope evidence. J Mammal 84: 471–479CrossRefGoogle Scholar
  121. Sponheimer M, Lee-Thorp J, de Ruiter D, Codron D, Codron J, Baugh A, Thackeray F (2005a) Hominins, sedges, and termites: New carbon isotope data from the Sterkfontein Valley and Kruger National Park. J Hum Evol 48: 301–312PubMedCrossRefGoogle Scholar
  122. Sponheimer M, de Ruiter D, Lee-Thorp J, Spath A (2005b) Sr/Ca and early hominin diets revisited: New data from modern and fossil tooth enamel. J Hum Evol 48: 147–156PubMedCrossRefGoogle Scholar
  123. Stevens RE, Hedges REM (2004) Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP-present: Palaeoclimatic interpretations. Quat Sci Rev 23: 977–991CrossRefGoogle Scholar
  124. Stiner M (1994) Honor among thieves. Princeton University Press, PrincetonGoogle Scholar
  125. Stock WD, Chuba DK, Verboom GA (2004) Distribution of South African C-3 and C-4 species of Cyperaceae in relation to climate and phylogeny. Austral Ecol 29: 313–319CrossRefGoogle Scholar
  126. Strum SC (1987) Almost human: A journey into the world of baboons. Random House, New YorkGoogle Scholar
  127. Stuart C, Stuart T (2000) A field guide to the tracks and signs of southern and East African wildlife. Stuik Publishers, Cape TownGoogle Scholar
  128. Sullivan CH, Krueger HW (1981) Carbon isotope analysis of separate chemical phases in modern and fossil bone. Nature 292: 333–335PubMedCrossRefGoogle Scholar
  129. Sullivan CH, Krueger HW (1983) Carbon isotope ratios of bone apatite and animal diet reconstruction. Nature 301: 177–178PubMedCrossRefGoogle Scholar
  130. Susman RL (1988) Hand of Paranthropus robustus from Member I, Swartkrans: Fossil evidence for tool behavior. Science 239: 781–784CrossRefGoogle Scholar
  131. Tackholm V, Drar M (1973) Flora of Egypt, vol. II. Otto Koeltz Antiquariat, KoenigsteinGoogle Scholar
  132. Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites: An indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22: 343–351CrossRefGoogle Scholar
  133. Tayasu I, Inoue T, Miller LR, Sugimoto A, Takeichi S, Abe T (1998) Confirmation of soil-feeding termites (Isoptera; Termitidae; Termitinae) in Australia using stable isotope ratios. Funct Ecol 12: 536–542CrossRefGoogle Scholar
  134. Teaford MF (1992) Dental microwear and diet in extant and extinct Theropithecus: Preliminary analyses. In: Jablonski N (ed) Theropithecus: The rise and fall of a primate genus. Cambridge University Press, Cambridge, pp 331–349Google Scholar
  135. Teaford MF, Ungar PS, Grine FE (2002) Paleontological evidence for the diets of African Plio-Pleistocene hominins with special reference to early Homo. In: Ungar PS, Teaford MF (eds) Human diet: Its origin and evolution. Bergin & Garvey, Westport, pp 143–166Google Scholar
  136. Teleki G (1981) The omnivorous diet and eclectic feeding habits of chimpanzees in Gombe National Park, Tanzania. In: Harding RSO, Teleki G (eds) Omnivorous primates. Columbia University Press, New York, pp 303–343Google Scholar
  137. Tieszen LL, Fagre T (1993) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In: Lambert JB, Grupe G (eds) Prehistoric human bone: Archaeology at the molecular level. Springer-Verlag, Berlin Germany, pp 121–155CrossRefGoogle Scholar
  138. Trickett MA, Budd P, Montgomery J, Evans J (2003) An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human skeletal tissue. Appl Geochem 18: 653–658CrossRefGoogle Scholar
  139. Ungar P (1998) Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol 6: 205–217CrossRefGoogle Scholar
  140. Ungar P (2004) Dental topography and diets of Australopithecus afarensis and early Homo. J Hum Evol 46: 605–622PubMedCrossRefGoogle Scholar
  141. Ungar P, Grine FE (1991) Incisor size and wear in Australopithecus africanus and Paranthropus robustus. J Hum Evol 20: 313–340CrossRefGoogle Scholar
  142. van der Merwe NJ (1989) Natural variation in the 13C concentration and its effect on environmental reconstruction using 13C/12C ratios in animal bones. In: Price TD (ed) The chemistry of prehistoric human bone. Cambridge University Press, Cambridge, pp 105–125Google Scholar
  143. van der Merwe NJ, Cushing AE, Blumenschine RJ (1999) Stable isotope ratios of fauna and the environment of paleolake Olduvai. J Hum Evol 34: A24–A25Google Scholar
  144. van der Merwe NJ, Thackeray JF, Lee-Thorp JA, Luyt J (2003) The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. J Hum Evol 44: 581–597PubMedCrossRefGoogle Scholar
  145. Vogel JC (1978) Recycling of carbon in a forest environment. Oecol Plantar 13: 89–94Google Scholar
  146. Vogel JC, van der Merwe NJ (1977) Isotopic evidence for early maize cultivation in New York state. Am Antiquity 42: 238–242CrossRefGoogle Scholar
  147. Vrba ES (1980) The significance of bovid remains as indicators of environment and predation patterns. In: Behrensmeyer AK, Hill AP (eds) Fossils in the making. University of Chicago Press, Chicago, pp 247–272Google Scholar
  148. Vrba ES (1985) Ecological and adaptive changes associated with early hominid evolution. In: Delson E (ed) Ancestors: The hard evidence. Alan R. Liss, New York, pp 63–71Google Scholar
  149. Wang Y, Cerling T (1994) A model of fossil tooth and bone diagenesis: Implications for paleodiet reconstruction from stable isotopes. Palaeogeog Palaeoclimatol Palaeoecol 107: 281–289CrossRefGoogle Scholar
  150. Wolpoff MH (1973) Posterior tooth size, body size, and diet in South African gracile australopithecines. Am J Phys Anthropol 39: 375–394PubMedCrossRefGoogle Scholar
  151. Wood B, Strait D (2004) Patterns of resource use in early Homo and Paranthropus. J Hum Evol 46: 119–162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Matt Sponheimer
  • Julia Lee-Thorp

There are no affiliations available

Personalised recommendations