Advertisement

Glycoscience pp 737-753 | Cite as

Anomeric Anhydro Sugars

  • Nathan W. McGill
  • Spencer J. WilliamsEmail author

Abstract

Anomeric anhydro sugars are sugar derivatives where the anomeric carbon participates in an acetal linkage with two of the hydroxyl groups of the sugar. They are essentially intramolecular glycosides, and their bicyclic nature provides a powerful conformational constraint that greatly influences their reactivity. This chapter reviews the occurrence, properties, formation, and reactions of anomeric anhydro sugars. Particular emphasis is placed on 1,2- and 1,6‑anhydropyranoses, including conformational aspects and ring‐opening reactions. Epoxide‐containing 1,6‑anhydro sugars (Černý epoxides) are briefly reviewed, and the formation and some reactions of the 1,6‑anhydro sugar enone, levoglucosenone, is covered. An overview is given of the use of 1,2‑anhydro sugar as glycosyl donors. Also discussed are the formation and reactions of anomeric anhydro sugars containing nitrogen, sulfur, or selenium.

Keywords

Anhydro sugars Dianhydro sugars Epoxide Glucosan Glycosan Levoglucosan Levoglucosenone Seleno sugar Selenolevoglucosan Thiolevoglucosan 

Abbreviations

CSA

camphorsulfonic acid

DMDO

3,3‑dimethyldioxirane

mw

microwave

NIS

N‑iodosuccinimide

TESOTf

triethylsilyl triflate

References

  1. 1.
    Angyal SJ, Dawes K (1968) Aust J Chem 21:2747CrossRefGoogle Scholar
  2. 2.
    Kochetkov NK (1987) Tetrahedron 43:2389CrossRefGoogle Scholar
  3. 3.
    Černý M, Stanek J Jr (1977) Adv Carbohydr Chem Biochem 34:23CrossRefGoogle Scholar
  4. 4.
    Bols M (1996) 1,6‑Anhydro sugars. Carbohydrate building blocks. Wiley, New YorkGoogle Scholar
  5. 5.
    Peat S (1946) Adv Carbohydr Chem 2:37Google Scholar
  6. 6.
    Witczak ZJ (1994) Selective protection of levoglucosan derivatives. In: Witczak ZJ (ed) Frontiers in biomedicine and biotechnology. Levoglucosenone and levoglucosans, chemistry and applications. ATL Press, Mount Prospect, 2:165Google Scholar
  7. 7.
    Tanret M (1894) Bull Soc Chim Fr 211:944Google Scholar
  8. 8.
    Park YJ, Kim HS, Jeffrey GA (1971) Acta Cryst B 27:220CrossRefGoogle Scholar
  9. 9.
    Heyns K, Weyer J (1968) Liebigs Ann Chem 718:224CrossRefGoogle Scholar
  10. 10.
    Pictet A, Sarasin J (1918) Helv Chim Acta 1:87CrossRefGoogle Scholar
  11. 11.
    Ward RB (1963) Methods Carbohydr Chem 2:394Google Scholar
  12. 12.
    Shafizadeh F, Furneaux RH, Stevenson TT, Cochran TG (1978) Carbohydr Res 61:519CrossRefGoogle Scholar
  13. 13.
    Schkolnik G, Rudich Y (2006) Anal Bioanal Chem 385:26CrossRefGoogle Scholar
  14. 14.
    Knauf AE, Hann RM, Hudson CS (1941) J Am Chem Soc 63:1447CrossRefGoogle Scholar
  15. 15.
    Hann RM, Hudson CS (1942) J Am Chem Soc 64:925CrossRefGoogle Scholar
  16. 16.
    Zottola MA, Alonso R, Vite GD, Fraser-Reid B (1989) J Org Chem 54:6123CrossRefGoogle Scholar
  17. 17.
    Cleophax J (2003) Synthesis 1015Google Scholar
  18. 18.
    Coleman GH (1963) Methods Carbohydr Chem 2:397Google Scholar
  19. 19.
    Boons G-J, Isles S, Setälä P (1995) Synlett 755Google Scholar
  20. 20.
    Rao MV, Nagarajan M (1987) Carbohydr Res 162:141CrossRefGoogle Scholar
  21. 21.
    Caron S, McDonald A, Heathcock CH (1996) Carbohydr Res 281:179CrossRefGoogle Scholar
  22. 22.
    Haeckel R, Lauer G, Oberdorfer F (1996) Synlett 21Google Scholar
  23. 23.
    Mereyala HB, Venkataramanaiah KC, Dalvoy VS (1992) Carbohydr Res 225:151CrossRefGoogle Scholar
  24. 24.
    Lauer G, Oberdorfer F (1993) Angew Chem Int Ed Engl 32:272CrossRefGoogle Scholar
  25. 25.
    Černý M (1994) 1,6:2,3- and 1,6:3,4‑Dianhydro‐β‑d‑hexopyranoses. Synthesis and preparative applications. In: Witczak ZJ (ed) Frontiers in biomedicine and biotechnology. Levoglucosenone and levoglucosans, chemistry and applications. ATL Press, Mount Prospect, 2:121Google Scholar
  26. 26.
    Tailler D, Jacquinet JC, Noirot AM, Beau JM (1992) J Chem Soc Perkin 1 3163Google Scholar
  27. 27.
    Černý M (2003) Adv Carbohydr Chem Biochem 58:122Google Scholar
  28. 28.
    Stoffyn PJ, Jeanloz RW (1960) J Biol Chem 235:2507Google Scholar
  29. 29.
    Hölte JV (1998) Microbiol Mol Biol R 62:181Google Scholar
  30. 30.
    Hölte JV, Mirelman D, Sharon N, Schwarz U (1975) J Bacteriol 124:1067Google Scholar
  31. 31.
    Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M, Park J (2005) J Bacteriol 187:3643CrossRefGoogle Scholar
  32. 32.
    Pulido R, Gotor V (1994) Carbohydr Res 252:55Google Scholar
  33. 33.
    Ljunger G, Adlercreutz P, Mattiasson B (1994) Biotechnol Lett 16:1167CrossRefGoogle Scholar
  34. 34.
    Somsák L, Ferrier RJ (1991) Adv Carbohydr Chem Biochem 49:37CrossRefGoogle Scholar
  35. 35.
    Ohrui H, Horiki H, Kishi H, Meguro H (1983) Agric Biol Chem 47:1101Google Scholar
  36. 36.
    Ferrier RJ, Furneaux RH (1980) Aust J Chem 33:1025CrossRefGoogle Scholar
  37. 37.
    Nishikawa T, Mishima Y, Ohyabu N, Isobe M (2004) Tetrahedron Lett 45:175CrossRefGoogle Scholar
  38. 38.
    Vogel C, Liebelt B, Steffan W, Kristen H (1992) J Carbohydr Chem 11:287CrossRefGoogle Scholar
  39. 39.
    Zottola M, Rao BV, Fraser-Reid B (1991) J Chem Soc Chem Commun 969Google Scholar
  40. 40.
    Lee JC, Tai CA, Hung SC (2002) Tetrahedron Lett 43:851CrossRefGoogle Scholar
  41. 41.
    Burgey CS, Vollerthun R, Fraser-Reid B (1994) Tetrahedron Lett 35:2637CrossRefGoogle Scholar
  42. 42.
    Wang L-X, Sakairi N, Kuzuhara H (1990) J Chem Soc Perkin 1 1677Google Scholar
  43. 43.
    Koto S, Uchida T, Zen S (1972) Chem Lett 1049Google Scholar
  44. 44.
    Ruckel ER, Schuerch C (1966) J Org Chem 31:2233CrossRefGoogle Scholar
  45. 45.
    Yoshida T, Nakashima H, Yamamoto N, Uryu T (1993) Polymer J 25:1069CrossRefGoogle Scholar
  46. 46.
    Brigl P (1922) Hoppe-Seyler's Z Physiol Chem 122:245CrossRefGoogle Scholar
  47. 47.
    Lemieux RU, Huber G (1956) J Am Chem Soc 78:4117CrossRefGoogle Scholar
  48. 48.
    Halcomb RL, Danishefsky SJ (1989) J Am Chem Soc 111:6661CrossRefGoogle Scholar
  49. 49.
    Danishefsky SJ, Bilodeau MT (1996) Angew Chem Int Ed Engl 35:1380CrossRefGoogle Scholar
  50. 50.
    Collins P, Ferrier R (1995) Monosaccharides: Their Chemistry and Their Roles in Natural Products. Wiley, ChichesterGoogle Scholar
  51. 51.
    Leeuwenburgh MA, van der Marel GA, Overkleeft HS, van Boom JH (2003) J Carbohydr Chem 22:549CrossRefGoogle Scholar
  52. 52.
    Timmers CM, Wigchert SCM, Leeuwenburgh MA, van der Marel GA, van Boom JH (1998) Eur J Org Chem 1998:91CrossRefGoogle Scholar
  53. 53.
    Seeberger PH, Danishefsky SJ (1998) Acc Chem Res 31:685CrossRefGoogle Scholar
  54. 54.
    Ito H, Eby R, Kramer S, Schuerch C (1980) Carbohydr Res 86:193CrossRefGoogle Scholar
  55. 55.
    Bhagwat SS, Hamam PR, Still WC (1985) J Am Chem Soc 107:6372CrossRefGoogle Scholar
  56. 56.
    Kops J, Schuerch C (1965) J Org Chem 30:3951CrossRefGoogle Scholar
  57. 57.
    Bullock C, Hough L, Richardson AC (1990) Carbohydr Res 197:131CrossRefGoogle Scholar
  58. 58.
    Thiem J, Wiesner M (1993) Carbohydr Res 249:197CrossRefGoogle Scholar
  59. 59.
    Nokami T, Werz DB, Seeberger PH (2005) Helv Chim Acta 88:2823CrossRefGoogle Scholar
  60. 60.
    Dimler RJ, Davis HA, Hilbert GE (1946) J Am Chem Soc 68:1377CrossRefGoogle Scholar
  61. 61.
    Alexander BH, Dimler RJ, Mehltretter CL (1951) J Am Chem Soc 73:4658CrossRefGoogle Scholar
  62. 62.
    Dimler RJ (1952) Adv Carbohydr Chem 7:37Google Scholar
  63. 63.
    Angyal SJ, Beveridge RJ (1978) Aust J Chem 31:1151CrossRefGoogle Scholar
  64. 64.
    Sarkar SK, Choudhury AK, Mukhopadhyay B, Roy N (1999) J Carbohydr Chem 18:1121CrossRefGoogle Scholar
  65. 65.
    Witczak ZJ (1994) Levoglucosenone; past, present and further applications In: Witczak ZJ (ed) Frontiers in biomedicine and biotechnology. Levoglucosenone and levoglucosans, chemistry and applications. ATL Press, Mount Prospect, 2:3Google Scholar
  66. 66.
    Halpern Y, Riffer R, Broido A (1973) J Org Chem 38:204CrossRefGoogle Scholar
  67. 67.
    Shafizadeh F, Furneaux RH, Stevenson TT (1979) Carbohydr Res 71:169CrossRefGoogle Scholar
  68. 68.
    Brimacombe JS, Hunedy F, Tucker LCN (1978) Carbohydr Res 60:C11CrossRefGoogle Scholar
  69. 69.
    Shafizadeh F, Chin PPS (1977) Carbohydr Res 58:79CrossRefGoogle Scholar
  70. 70.
    Mori M, Chuman T, Kato K (1984) Carbohydr Res 129:73CrossRefGoogle Scholar
  71. 71.
    Witczak ZJ (1994) Pure Appl Chem 66:2189CrossRefGoogle Scholar
  72. 72.
    Witczak ZJ, Chhabra R, Chen H, Xie X-Q (1997) Carbohydr Res 301:167CrossRefGoogle Scholar
  73. 73.
    Ward DD, Shafizadeh F (1981) Carbohydr Res 95:155CrossRefGoogle Scholar
  74. 74.
    Akagi M, Tejima S, Haga M (1963) Chem Pharm Bull 11:58Google Scholar
  75. 75.
    Lundt I, Skelbæk-Pedersen B (1981) Acta Chem Scand B35:637CrossRefGoogle Scholar
  76. 76.
    Whistler RL, Seib PA (1966) Carbohydr Res 2:93CrossRefGoogle Scholar
  77. 77.
    Driguez H, McAuliffe JC, Stick RV, Tilbrook DMG, Williams SJ (1996) Aust J Chem 49:343CrossRefGoogle Scholar
  78. 78.
    Ramesha AR, Chandrasekaran S (1992) Synth Commun 22:3227CrossRefGoogle Scholar
  79. 79.
    Sridhar PR, Saravanan V, Chandrasekaran S (2005) Pure Appl Chem 77:145CrossRefGoogle Scholar
  80. 80.
    Yamamoto K, Haga M, Tejima S (1975) Chem Pharm Bull 23:233Google Scholar
  81. 81.
    Skelton BW, Stick RV, Tilbrook DMG, White AH, Williams SJ (2000) Aust J Chem 53:389CrossRefGoogle Scholar
  82. 82.
    Stick RV, Tilbrook DMG, Williams SJ (1997) Tetrahedron Lett 38:2741CrossRefGoogle Scholar
  83. 83.
    Stick RV, Tilbrook DMG, Williams SJ (1999) Aust J Chem 52:685CrossRefGoogle Scholar
  84. 84.
    Buděšínský M, Poláková J, Hamerníková M, Císařová I, Trnka TS, Černý M (2006) Coll Czech Chem Commun 71:311CrossRefGoogle Scholar
  85. 85.
    Paulsen H, Todt K (1967) Chem Ber 100:512CrossRefGoogle Scholar
  86. 86.
    Lafont D, Wollny A, Boullanger P (1998) Carbohydr Res 310:9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  1. 1.School of ChemistryThe University of MelbourneParkvilleAustralia

Personalised recommendations