Force Control

Abstract

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Abbreviations

DOF

degree of freedom

PD

proportional-derivative

PI

policy iteration

RCC

remote center of compliance

References

  1. 7.1.
    T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984)Google Scholar
  2. 7.2.
    J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRefGoogle Scholar
  3. 7.3.
    I. Nevins, D.E. Whitney: The force vector assembler concept, First CISM-IFToMM Symp. Theory Pract. Robot. Manip. (Udine 1973)Google Scholar
  4. 7.4.
    M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
  5. 7.5.
    J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Contr. 28, 153–161 (1983)CrossRefMATHGoogle Scholar
  6. 7.6.
    G. Hirzinger, N. Sporer, A. Albu-Shäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLRʼs torque-controlled light weight robot III – are we reaching the technological limits now?, IEEE Int. Conf. Robot. Autom. (Washington 2002) pp. 1710–1716Google Scholar
  7. 7.7.
    N. Hogan: Impedance control: an approach to manipulation: parts I–III, ASME J. Dyn. Syst. Meas. Contr. 107, 1–24 (1985)CrossRefMATHGoogle Scholar
  8. 7.8.
    H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: the fundamental concepts of compliant motion, IEEE J. Robot. Autom. 2, 83–92 (1986)Google Scholar
  9. 7.9.
    J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Contr. (Albuquerque, 1980) pp. 95–100Google Scholar
  10. 7.10.
    D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Contr. 99, 91–97 (1977)CrossRefGoogle Scholar
  11. 7.11.
    M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)CrossRefGoogle Scholar
  12. 7.12.
    J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3–17 (1988)CrossRefGoogle Scholar
  13. 7.13.
    M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Contr. 103, 126–133 (1981)CrossRefGoogle Scholar
  14. 7.14.
    T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force, IEEE J. Robot. Autom. 3, 386–392 (1987)CrossRefGoogle Scholar
  15. 7.15.
    N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEE Trans. Autom. Contr. 33, 419–426 (1988)CrossRefMATHMathSciNetGoogle Scholar
  16. 7.16.
    J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robot. Autom. 5, 30–46 (1989)CrossRefGoogle Scholar
  17. 7.17.
    O. Khatib: A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE J. Robot. Autom. 3, 43–53 (1987)CrossRefGoogle Scholar
  18. 7.18.
    L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Contr. 44, 798–802 (1999)CrossRefMATHMathSciNetGoogle Scholar
  19. 7.19.
    S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robot. Autom. 9, 361–373 (1993)CrossRefGoogle Scholar
  20. 7.20.
    D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robot. Res. 6(1), 3–14 (1987)CrossRefGoogle Scholar
  21. 7.21.
    M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems., Tutorial IEEE Int. Conf. Robot. Autom. (Atlanta 1993)Google Scholar
  22. 7.22.
    J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: a birdʼs eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, Berlin, Heidelberg 1998) pp. 1–17CrossRefGoogle Scholar
  23. 7.23.
    D.M. Gorinevski, A.M. Formalsky, A.Yu. Schneider: Force Control of Robotics Systems (CRC Press, Boca Raton 1997)Google Scholar
  24. 7.24.
    B. Siciliano, L. Villani: Robot Force Control (Kluwer Academic Publishers, Boston 1999)MATHGoogle Scholar
  25. 7.25.
    D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Contr. 104, 65–77 (1982)CrossRefMATHGoogle Scholar
  26. 7.26.
    N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robot. Autom. 4, 677–686 (1988)CrossRefGoogle Scholar
  27. 7.27.
    H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Contr. 35, 710–714 (1990)CrossRefMATHGoogle Scholar
  28. 7.28.
    R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robot. Autom. 4(3), 134–141 (1989)Google Scholar
  29. 7.29.
    R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robot. Syst. 10, 217–248 (1993)CrossRefMATHGoogle Scholar
  30. 7.30.
    Z. Lu, A.A. Goldenberg: Robust impedance control and force regulation: theory and experiments, Int. J. Robot. Res. 14, 225–254 (1995)CrossRefGoogle Scholar
  31. 7.31.
    R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robot. Autom. 4, 549–556 (1988)CrossRefGoogle Scholar
  32. 7.32.
    J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robot. Autom. 3, 567–572 (1987)CrossRefGoogle Scholar
  33. 7.33.
    T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)CrossRefGoogle Scholar
  34. 7.34.
    E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Contr. 120, 496–500 (1998)CrossRefGoogle Scholar
  35. 7.35.
    E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Contr. 120, 501–506 (1998)CrossRefGoogle Scholar
  36. 7.36.
    R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling and control, IEEE Trans. Robot. Autom. 7, 320–333 (1991)CrossRefGoogle Scholar
  37. 7.37.
    M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robot. Autom. 6, 473–482 (1990)CrossRefGoogle Scholar
  38. 7.38.
    J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robot. Autom. 8, 213–227 (1992)CrossRefGoogle Scholar
  39. 7.39.
    E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robot. Autom. 13, 546–556 (1997)CrossRefGoogle Scholar
  40. 7.40.
    F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robot. Autom. 15, 289–300 (1999)CrossRefGoogle Scholar
  41. 7.41.
    F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Contr. 44, 1943–1946 (1999)CrossRefMATHGoogle Scholar
  42. 7.42.
    S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach, Lecture Notes in Control and Information Sciences (Springer, London 2001)MATHGoogle Scholar
  43. 7.43.
    H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the “task frame formalism” – a synthesis, IEEE Trans. Robot. Autom. 12, 581–589 (1996)CrossRefGoogle Scholar
  44. 7.44.
    H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Trans. Autom. Des. 110, 138–144 (1988)CrossRefGoogle Scholar
  45. 7.45.
    J. Duffy: The fallacy of modern hybrid control theory that is based on ‘orthogonal complements’ of twist and wrench spaces, J. Robot. Syst. 7, 139–144 (1990)CrossRefGoogle Scholar
  46. 7.46.
    K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robot. Res. 12, 1–19 (1993)CrossRefGoogle Scholar
  47. 7.47.
    T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, IEEE Conf. Robot. Autom. (Sacramento 1991) pp. 2820–2825Google Scholar
  48. 7.48.
    J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robot. Res. 18(12), 1161–1184 (1999)CrossRefGoogle Scholar
  49. 7.49.
    T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robot. Autom. 19, 26–41 (2007)CrossRefGoogle Scholar
  50. 7.50.
    J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robot. Res. 26(5), 433–455 (2007)CrossRefGoogle Scholar
  51. 7.51.
    A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robot. Autom. 10, 542–548 (1994)CrossRefGoogle Scholar
  52. 7.52.
    T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – controller design and experiment, IEEE J. Robot. Autom. 4, 699–705 (1988)CrossRefGoogle Scholar
  53. 7.53.
    J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robot. Res. 16(3), 340–356 (1997)CrossRefGoogle Scholar
  54. 7.54.
    R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Contr. 37, 1501–1505 (1992)CrossRefMATHMathSciNetGoogle Scholar
  55. 7.55.
    L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robot. Autom. 13, 105–116 (1997)CrossRefGoogle Scholar
  56. 7.56.
    B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Contr. 39, 371–376 (1992)MathSciNetGoogle Scholar
  57. 7.57.
    S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Contr. 39, 647–652 (1994)CrossRefMATHGoogle Scholar
  58. 7.58.
    J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Contr. 36, 365–371 (1991)CrossRefMATHMathSciNetGoogle Scholar
  59. 7.59.
    R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Contr. 38, 1634–1650 (1993)CrossRefMathSciNetGoogle Scholar
  60. 7.60.
    L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Contr. Syst. Mag. 14(1), 31–40 (1994)CrossRefGoogle Scholar
  61. 7.61.
    S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Contr. Syst. Mag. 7(2), 48–52 (1987)CrossRefGoogle Scholar
  62. 7.62.
    C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robot. Res. 8(4), 51–72 (1989)CrossRefGoogle Scholar
  63. 7.63.
    R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robot. Res. 12, 351–365 (1993)CrossRefGoogle Scholar
  64. 7.64.
    J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: a discontinuous control approach, Int. J. Robot. Res. 12, 146–163 (1993)CrossRefGoogle Scholar
  65. 7.65.
    T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Contr. Syst. Mag. 16(1), 32–40 (1996)CrossRefGoogle Scholar
  66. 7.66.
    B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Contr. 42, 200–215 (1997)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Informatica e Sistemistica, PRISMA LabUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Department of Mechanical EngineeringKatholieke Universiteit LeuvenLeuven-HeverleeBelgium

Personalised recommendations