Search and Rescue Robotics

Reference work entry


In order to summarize the status of rescue robotics, this chapter will cover the basic characteristics of disasters and their impact on robotic design, describe the robots actually used in disasters to date, promising robot designs (e.g., snakes, legged locomotion) and concepts (e.g., robot teams or swarms, sensor networks), methods of evaluation in benchmarks for rescue robotics, and conclude with a discussion of the fundamental problems and open issues facing rescue robotics, and their evolution from an interesting idea to widespread adoption. The Chapter will concentrate on the rescue phase, not recovery, with the understanding that capabilities for rescue can be applied to, and extended for, the recovery phase. The use of robots in the prevention and preparedness phases of disaster management are outside the scope of this chapter.


Global Position System Unmanned Aerial Vehicle Situation Awareness Snake Robot Unmanned Ground Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



American Association for Artificial Intelligence


charge-coupled devices


Defense Advanced Research Projects Agency


global positioning system


human–robot interaction


Institute of Electrical and Electronics Engineers


mean time between failure


simultaneous localization and mapping


unmanned aerial vehicles


unmanned ground vehicle




unmanned surface vehicle


unmanned underwater vehicles


  1. 51.1.
    A. Davids: Urban search and rescue robots: from tragedy to technology, Intell. Syst. IEEE 17(2), 81–83, 1541–1672 (2002) [see also IEEE Intelligent Systems and Their Applications]Google Scholar
  2. 51.2.
    J. Walter, International Federation of Red Cross and Red Crescent Societies: World disasters report 2005. (Kumarian Press, Bloomfield 2005)Google Scholar
  3. 51.3.
    Standard on Operations and Training for Technical Rescue Incidents. (National Fire Protection Association 1999)Google Scholar
  4. 51.4.
    Technical Rescue Program Development Manual. (United States Fire Administration 1996)Google Scholar
  5. 51.5.
    J.A. Barbera, C. DeAtley, A.G. Macintyre: Medical aspects of urban search and rescue, Fire Eng. 148, 88–92 (1995)Google Scholar
  6. 51.6.
    R.R. Murphy, S. Stover: Gaps analysis for rescue robots. In: ANS 2006: Sharing Solutions for Emergencies and Hazardous Environments (American Nuclear Society, LaGrange Park 2006)Google Scholar
  7. 51.7.
    C. Schlenoff, E. Messina: A robot ontology for urban search and rescue. In: ACM workshop on Research in knowledge representation for autonomous systems, Bremen (Association for Computing Machinery, New York 2005) pp. 27–34Google Scholar
  8. 51.8.
    R. Murphy, S. Stover, H. Choset: Lessons learned on the uses of unmanned vehicles from the 2004 florida hurricane season. In: AUVSI Unmanned Systems North America, Baltimore (Association for Unmanned Vehicle Systems International, Arlington 2005)Google Scholar
  9. 51.9.
    J. Casper, R. Murphy: Human-robot interaction during the robot-assisted urban search and rescue effort at the world trade center, IEEE Trans. Syst. Man Cybernet. B 33(3), 367–385 (2003)CrossRefGoogle Scholar
  10. 51.10.
    R.R. Murphy: Trial by fire, IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)CrossRefGoogle Scholar
  11. 51.11.
    S. Tadokoro, T. Takamori, S. Tsurutani, K. Osuka: On robotic rescue facilities for disastrous earthquakes – from the great hanshin-awaji (kobe) earthquake, J. Robot. Mechatron. 9(1), 10 (1997)Google Scholar
  12. 51.12.
    R. Murphy: Human-robot interaction in rescue robotics, IEEE Trans. Syst. Man Cybernet. Appl. Rev. 34(2), 138–153 (2004)CrossRefMathSciNetGoogle Scholar
  13. 51.13.
    C. Manzi, M. Powers, K. Zetterlund: Critical information flows in the alfred p. murrah building bombing. Technical report, Chemical and Biological Arms Control Institute (2002)Google Scholar
  14. 51.14.
    F. Matsuno, S. Tadokoro: Rescue Robots and Systems in Japan. IEEE International Conference on Robotics and Biomimetics (2004) pp. 12–20Google Scholar
  15. 51.15.
    R. Murphy, E. Steimle, C. Cullins, K. Pratt, C. Griffin: Cooperative damage inspection with unmanned surface vehicle and micro aerial vehicle at hurricane wilma. In: IEEE/RSJ International Conference on Inteliigent Robots and Systems (video proceedings), Beijing (IEEE Press 2006)Google Scholar
  16. 51.16.
    R.R. Murphy, C. Griffin, S. Stover, K. Pratt: Use of micro air vehicles at hurricane katrina. In: IEEE Workshop on Safety Security Rescue Robots, Gaithersburg (IEEE Press 2006)Google Scholar
  17. 51.17.
    R. Murphy, J. Casper, J. Hyams, M. Micire, B. Minten: Mobility and sensing demands in usar. In: IECON: Session on Rescue Engineering, Vol. 1, Nagoya (IEEE Press 2000) pp.138–142Google Scholar
  18. 51.18.
    R.R. Murphy, S. Stover: Rescue robot performance at 2005 la conchita mudslides. In: ANS 2006: Sharing Solutions for Emergencies and Hazardous Environments (American Nuclear Society, LaGrange Park 2006)Google Scholar
  19. 51.19.
    K. Pratt, R.R. Murphy, S. Stover, C. Griffin: Requirements for semi-autonomous flight in miniature uavs for structural inspection. In: AUVSI Unmanned Systems North America, Orlando (Association for Unmanned Vehicle Systems International, Arlington 2006)Google Scholar
  20. 51.20.
    A. Wolf, H.B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, H. Choset: A Mobile Hyper Redundant Mechanism for Search and Rescue Tasks. International Conference on Intelligent Robots ans Systems, 2003. (IROS 2003). Proc IEEE/RSJ, Vol. 3 (2003) pp. 2889–2895Google Scholar
  21. 51.21.
    I. Erkmen, A. Erkmen, F. Matsuno, R. Chatterjee, T. Kamegawa: Snake robots to the rescue!, IEEE Robot. Autom. Mag. 9(3), 17–25 (2002)CrossRefGoogle Scholar
  22. 51.22.
    S. Hirose, E. Fukushima: Development of mobile robots for rescue operations, Adv. Robot. 16(6), 509–512 (2002)CrossRefGoogle Scholar
  23. 51.23.
    D. Campbell, M. Buehler: Stair Descent in the Simple Hexapod ʼRHexʼ. Conference on Robotics and Automation 2003. Proc. ICRAʼ03, Vol. 1 (2003) pp. 1380–1385Google Scholar
  24. 51.24.
    R.M. Voyles, A.C. Larson: Terminatorbot: a novel robot with dual-use mechanism for locomotion and manipulation, Mechatron. IEEE/ASME Trans. 10(1), 17–25 (2005)CrossRefGoogle Scholar
  25. 51.25.
    W.E. Green, P.Y. Oh: A fixed-wing aircraft for hovering in caves, tunnels, and buildings. In: American Control Conference (IEEE Press 2006) pp. 1–6Google Scholar
  26. 51.26.
    N. Sato, F. Matsuno, T. Yamasaki, T. Kamegawa, N. Shiroma, H. Igarashi: Cooperative Task Execution by a Multiple Robot Team and its Operators in Search and Rescue Operations. International Conference on Intelligent Robots ans Systems, 2004. (IROS 2004) Proc. IEEE/RSJ, Vol. 2 (2004) pp. 1083–1088Google Scholar
  27. 51.27.
    R. Murphy: Marsupial and shape-shifting robots for urban search and rescue, IEEE Intell. Syst. 15(3), 14–19 (2000)CrossRefMathSciNetGoogle Scholar
  28. 51.28.
    D.P. Stormont, A. Bhatt, B. Boldt, S. Skousen, M.D. Berkemeier: Building Better Swarms Through Competition: Lessons Learned from the Aaai/Robocup Rescue Robot Competition. International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proc. IEEE/RSJ, Vol. 3 (2003) pp. 2870–2875Google Scholar
  29. 51.29.
    R. Murphy: Biomimetic search for urban search and rescue. In: IROS 2000, Vol. 3. Takamatsu (2000) pp. 2073–2078Google Scholar
  30. 51.30.
    V. Kumar, D. Rus, S. Singh: Robot and sensor networks for first responders, IEEE Pervasive Comput. 3(4), 24–33 (2004)CrossRefGoogle Scholar
  31. 51.31.
    D. Kurabayashi, H. Tsuchiya, I. Fujiwara, H. Asama, K. Kawabata: Motion Algorithm for Autonomous Rescue Agents Based on Information Assistance System. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2003, Vol. 3 (2003) pp. 1132–1137Google Scholar
  32. 51.32.
    K.W. Sevcik, W.E. Green, P.Y. Oh: Exploring search-and-rescue in near-earth environments for aerial robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (IEEE Press, 2005) pp. 693–698Google Scholar
  33. 51.33.
    J. Tanaka, K. Suzumori, M. Takata, T. Kanda, M. Mori: A Mobile Jack Robot for Rescue Operation. Safety, Security and Rescue Roboticsm Workshop, 2005. Okayama Uni. (IEEE International, 2005) pp. 99–104Google Scholar
  34. 51.34.
    R. Murphy, T. Vestgaarden, H. Huang, S. Saigal: Smart Lift/Shore Agents for Adaptive Shoring of Collapse Structures: A Feasibility Study. IEEE Workshop on Safety Security Rescue Robots (Gaithersburg 2006)Google Scholar
  35. 51.35.
    L. Yihan, S.S. Panwar, S. Burugupalli: A mobile sensor network using autonomously controlled animals. Proceedings of the First International Conference on Broadband Networks (BROADNETSʼ04) (IEEE Computer Society Press, 2004) pp. 742–744Google Scholar
  36. 51.36.
    R. Murphy: Rats, robots, and rescue, IEEE Intell. Syst. 17(5), 7–9 (2002)CrossRefGoogle Scholar
  37. 51.37.
    T. Fong, I. Nourbakhsh, K. Dautenhahn: A survey of socially interactive robots, Robot. Autonom. Syst. 42(3–4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  38. 51.38.
    S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara, A. Hinjoh, T. Koto, I. Takeuchi, H. Takahashi, F. Matsuno, M. Hatayama, J. Nobe, S. Shimada: The robocup-rescue project: a robotic approach to the disaster mitigation problem. In: IEEE International Conference on Robotics and Automation, Vol. 4 (IEEE Press, 2000) pp. 4089–4094Google Scholar
  39. 51.39.
    T. Takahashi, S. Tadokoro: Working with robots in disasters, IEEE Robot. Automat. Mag. 9(3), 34–39 (2002)CrossRefGoogle Scholar
  40. 51.40.
    I.R. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, S. Burion: Human-robot teaming for search and rescue, IEEE Pervasive Comput. 4(1), 72–79 (2005)CrossRefGoogle Scholar
  41. 51.41.
    H. Kitano, S. Tadokoro: Robocup-rescue: A grand challenge for multi-agent and intelligent systems, AI Mag. 22(1), 39–52 (2001)Google Scholar
  42. 51.42.
    J. Burke, R. Murphy, M. Coovert, D. Riddle: Moonlight in miami: An ethnographic study of human-robot interaction in usar, Human-Comput. Interact. 19(1–2), 85–116 (2004), special issue on Human-Robot InteractionCrossRefGoogle Scholar
  43. 51.43.
    J. Carlson, R. Murphy: How ugvs physically fail in the field, IEEE Trans. Robot. 21(3), 423–437 (2005)CrossRefGoogle Scholar
  44. 51.44.
    G.M. Kulali, M. Gevher, A.M. Erkmen, I. Erkmen: Intelligent Gait Synthesizer for Serpentine Robots. IEEE International Conference on Robotics and Automation, 2002. Proc. ICRAʼ02, Vol. 2 (2002) pp. 1513–1518Google Scholar
  45. 51.45.
    A. Birk, S. Carpin: Rescue robotics: a crucial milestone on the road to autonomous systems, Adv. Robot. 20(5), 596–605 (2006), 595CrossRefGoogle Scholar
  46. 51.46.
    R. Murphy, D. Riddle, E. Rasmussen: Robot-assisted medical reachback: a survey of how medical personnel expect to interact with rescue robots. In: 13th IEEE Int. Workshop on Robot and Human Interactive Communication, ROMAN (IEEE Press, 2004) pp. 301–306Google Scholar
  47. 51.47.
    T. Fincannon, L.E. Barnes, R.R. Murphy, D.L. Riddle: Evidence of the Need for Social Intelligence in Rescue Robots, Vol. 2 (2004) pp. 1089–1095Google Scholar
  48. 51.48.
    R. Murphy, J. Burke, S. Stover: Field Studies of Safety Security Rescue Technologies Through Training and Response Activities. International Conference on Intelligent Robots and Systems, 2004 (IROS 2004). Proc IEEE/RSJ, Vol. 2 (2004) pp. 1089–1095Google Scholar
  49. 51.49.
    M. Endsley: Design and evaluation for situation awareness enhancement. In: Human Factors Society 32nd Annual Meeting (Santa Monica, CA 1988) pp.97–101Google Scholar
  50. 51.50.
    J.L. Drury, J. Scholtz, H.A. Yanco: Awareness in Human-Robot Interactions. IEEE International Conference on Systems, Man and Cybernetics, Vol. 1 (2003) pp. 912–918Google Scholar
  51. 51.51.
    J. Casper, R. Murphy: Workflow study on human-robot interaction in usar, ICRA 2002, 1997–2003 (2002)Google Scholar
  52. 51.52.
    J. Scholtz, B. Antonishek, J. Young: A Field Study of Two Techniques for Situation Awareness for Robot Navigation in Urban Search and Rescue. IEEE International Workshop on Robot and Human Interactive Communication, 2005. ROMAN 2005 (2005) pp. 131–136Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Computer Science and EngineeringUniversity of South FloridaTampaUSA
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  3. 3.Dipartimento di Informatica e Sistemistica ” A. Ruberti„Università degli Studi di Roma ” La Sapienza„RomaItaly
  4. 4.Intelligent Systems DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  5. 5.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  6. 6.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  7. 7.Department of Electrical EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations