Advertisement

Underwater Robotics

  • Gianluca AntonelliEmail author
  • Thor I. FossenEmail author
  • Dana R. YoergerEmail author
Reference work entry

Abstract

This chapter deals with the main underwater robotic topics. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. The modeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter.

Keywords

Inertial Measurement Unit Underwater Vehicle Autonomous Underwater Vehicle Remotely Operate Vehicle Vehicle Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AUV

autonomous underwater vehicles

CG

center of gravity

CML

concurrent mapping and localization

DOF

degree of freedom

DVL

Doppler velocity log

GPS

global positioning system

GUI

graphical user interface

IMU

inertial measurement units

IST

Information Society Technologies

IST

Instituto Superior Técnico

LBL

long-baseline system

MBARI

Monterey Bay Aquarium Research Institute

MCS

mission control system

NPS

Naval Postgraduate School

ODE

ordinary differential equation

PID

proportional–integral–derivative

ROV

remotely operated vehicle

SBL

short-baseline system

SISO

single-input single-output

SLAM

simultaneous localization and mapping

US

ultrasound

USBL

ultrashort-baseline system

UUV

unmanned underwater vehicles

UVMS

underwater vehicle manipulator system

References

  1. 44.1.
    J. Yuh, S.K. Choi, C. Ikehara, G.H. Kim, G. McMurty, M. Ghasemi-Nejhad, N. Sarkar N., K. Sugihara: Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM), (1998) pp. 63–68Google Scholar
  2. 44.2.
    P. Marty: ALIVE: An autonomous light intervention vehicle, Advances in Technology for Underwater Vehicles Conference, Oceanology Int. (2004)Google Scholar
  3. 44.3.
    T.I. Fossen: Marine Control Systems, Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics AS, Trondheim 2002)Google Scholar
  4. 44.4.
    S. Bennett: A brief history of automatic control, IEEE Contr. Syst. Mag. 16(3), 17–25 (1996)CrossRefGoogle Scholar
  5. 44.5.
    J. Yuh, M. West: Underwater robotics, J. Adv. Robot. 15(5), 609–639 (2001)CrossRefGoogle Scholar
  6. 44.6.
    SNAME: Marine engineers: nomenclature for treating the motion of a submerged body through a fluid, Techn. Res. Bull. 1-5, (1950)Google Scholar
  7. 44.7.
    T.I. Fossen: Guidance and Control of Ocean Vehicles (Wiley, New York 1994)Google Scholar
  8. 44.8.
    O.M. Faltinsen: Sea Loads on Ships and Offshore Structures (Cambridge Univ Press, Cambridge 1990)Google Scholar
  9. 44.9.
    J. Yuh: Modeling and control of underwater robotic vehicles, IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990)CrossRefGoogle Scholar
  10. 44.10.
    T.I. Fossen, A. Ross: Guidance and control of unmanned marine vehicles, IEEE Contr. Eng. Series (Peregrinus, Stevengce 2006) pp. 23–42Google Scholar
  11. 44.11.
    W.E. Cummins: The impulse response function and ship motions, Techn. Rep. 1661, David Taylor Model Basin, Hydromechanics Laboratory (DTIC, Washington 1962)Google Scholar
  12. 44.12.
    T.F. Ogilvie: Recent progress towards the understanding and prediction of ship motions, 5th Symposium Naval Hydrodynamics (1964) pp. 3–79Google Scholar
  13. 44.13.
    T. Perez, T.I. Fossen: Time-domain models of marine surface vessels for simulation and control design based on seakeeping computations, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon, 2006)Google Scholar
  14. 44.14.
    T.I. Fossen: A nonlinear unified state-space model for ship maneuvering and control in a seaway, J. Bifurc. Chaos 15(9), 2717–2746 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 44.15.
    M. Nahon: Determination of undersea vehicle hydrodynamic derivatives usingthe USAF Datcom, Proc. Oceans Conf. (Victoria 1993) pp. 283–288Google Scholar
  16. 44.16.
    J.N. Newman: Marine Hydrodynamics (MIT Press, Cambridge 1977)Google Scholar
  17. 44.17.
    A.J. Healey, D. Lienard: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE J. Oceanic Eng. 18, 327–339 (1993)CrossRefGoogle Scholar
  18. 44.18.
    B. Stevens, F. Lewis: Aircraft Control and Simulations (Wiley, New York 1992)Google Scholar
  19. 44.19.
    I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, 3rd IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Southampton 1994) pp. 45–57Google Scholar
  20. 44.20.
    E.A. de Barros, A. Pascoal, E. de Sea: Progress towards a method for predicting AUV derivatives, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon 2006)Google Scholar
  21. 44.21.
    N.P. Fofonoff, R.C. Millard: Algorithms for Computation of Fundamental Properties of Seawater, 44th edn. (UNESCO Technical papers in marine science, Paris 1983)Google Scholar
  22. 44.22.
    R. Eustice, H. Singh, J.J. Leonard, M. Walter, R. Ballard: Visually navigating the RMS Titanic with SLAM information filters, Proc. Robot. Sci. Syst. (Cambridge 2005) pp. 57–64Google Scholar
  23. 44.23.
    D.A. Smallwood, L.L. Whitcomb: Adaptive identification of dynamically positioned underwater robotic vehicles, IEEE Trans. Contr. Syst. Technol. 11(4), 505–515 (2003)CrossRefGoogle Scholar
  24. 44.24.
    S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robot. 21(4), 695–703 (2005)CrossRefGoogle Scholar
  25. 44.25.
    S. Majumder, S. Scheding, H.F. Durrant-Whyte: Multisensor data fusion for underwater navigation, Robot. Autonom. Syst. 35(2), 97–108 (2001)CrossRefzbMATHGoogle Scholar
  26. 44.26.
    J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A survey of underwater vehicle navigation: recent advances and new challenges, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon 2006)Google Scholar
  27. 44.27.
    W.P.A. Van Lammeren, J. van Manen, M.W.C. Oosterveld: The Wageningen B-screw series, Trans. SNAME 77, 269–317 (1969)Google Scholar
  28. 44.28.
    D.R. Yoerger, J.G. Cooke, J.J. Slotine: The Influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design, IEEE J. Oceanic Eng. 15, 167–178 (1990)CrossRefGoogle Scholar
  29. 44.29.
    A.J. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown: Toward an improved understanding of thruster dynamics for underwater vehicles, IEEE J. Oceanic Eng. 20(4), 354–361 (1995)CrossRefGoogle Scholar
  30. 44.30.
    L. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh: An accurate four-quadrant nonlinear dynamical model for marine trhusters: theory and experimental validation, IEEE J. Oceanic Eng. 25, 146–159 (2000)CrossRefGoogle Scholar
  31. 44.31.
    T.I. Fossen, M. Blanke: Nonlinear output feedback control of underwater vehicle propellersusing feedback form estimated axial flow velocity, IEEE J. Oceanic Eng. 25(2), 241–255 (2000)CrossRefGoogle Scholar
  32. 44.32.
    T.I. Fossen, T.I. Johansen: A survey of control allocation methods for ships and underwater vehicles, 14th IEEE Mediterriaen Conf. Contr. Autom. (Ancona 2006) pp. 1–6Google Scholar
  33. 44.33.
    K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru: Control architecture for autonomous underwater vehicles, IEEE Contr. Syst. 17, 48–64 (1997)CrossRefGoogle Scholar
  34. 44.34.
    P. Oliveira, A. Pascoal, V. Silva, C. Silvestre: Mission control of the MARIUS AUV: system design, implementation, and sea trials, Int. J. Syst. Sci. 29(10), 1065–1080 (1998)CrossRefzbMATHGoogle Scholar
  35. 44.35.
    D. Brutzman, M. Burns, M. Campbell, D. Davis, T. Healey, M. Holden, B. Leonhardt, D. Marco, D. McClarin, B. McGhee: NPS Phoenix AUV software integration and in-water testing, Autonomous Underwater Vehicle Technol. AUVʼ96 (1996) pp. 99–108Google Scholar
  36. 44.36.
    A.P. Aguiar, A.M. Pascoal: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents, 41st IEEE Conf. Decision Contr. (Las Vegas 2002) pp. 2105–2110Google Scholar
  37. 44.37.
    A.A. Bennett, J.J. Leonard: A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles, IEEE J. Oceanic Eng. 25(2), 213–226 (2000)CrossRefGoogle Scholar
  38. 44.38.
    M. Breivik, T.I. Fossen: Principles of guidance-based path following in 2D and 3D, 44th IEEE Conf. Decision Contr. 8th Eur. Contr. Conf. (Sevilla 2005)Google Scholar
  39. 44.39.
    F.A. Papoulias: Bifurcation analysis of line of sight vehicle guidance using sliding modes, Int. J. Bifurc. Chaos 1(4), 849–865 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 44.40.
    R. Rysdyk: UAV path following for constant line-of-sight, Proc. 2nd AIAA Unmanned Unlimited Syst. Technol. Operations – Aerospace (San Diego 2003)Google Scholar
  41. 44.41.
    M.D. Feezor, F.Y. Sorrel, P.R. Blankinship, J.G. Bellingham: Autonomous underwater vehicle homing/docking via electromagnetic guidance, IEEE J. Oceanic Eng. 26(4), 515–521 (2001)CrossRefGoogle Scholar
  42. 44.42.
    D. Wettergreen, A. Zelinsky, C. Gaskett: Autonomous guidance and control for an underwater robotic vehicle, Int. Conf. Field Service Robot. (Pittsburgh 1999)Google Scholar
  43. 44.43.
    G. Antonelli, S. Chiaverini, R. Finotello, R. Schiavon: Real-time path planning and obstacle avoidance for RAIS: an autonomous underwater vehicle, IEEE J. Oceanic Eng. 26(2), 216–227 (2001)CrossRefGoogle Scholar
  44. 44.44.
    J.C. Hyland, F.J. Taylor: Mine avoidance techniques for underwater vehicles, IEEE J. Oceanic Eng. 18, 340–350 (1993)CrossRefGoogle Scholar
  45. 44.45.
    D.R. Yoerger, J.J. Slotine: Robust trajectory control of underwater vehicles, IEEE J. Oceanic Eng. 10, 462–470 (1985)CrossRefGoogle Scholar
  46. 44.46.
    R. Cristi, F.A. Pappulias, A. Healey: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IEEE J. Oceanic Eng. 15(3), 152–160 (1990)CrossRefGoogle Scholar
  47. 44.47.
    D.B. Marco, A.J. Healey: Command, control and navigation experimental results with the NPS ARIES AUV, IEEE J. Oceanic Eng. 26(4), 466–476 (2001)CrossRefGoogle Scholar
  48. 44.48.
    M. Caccia, G. Veruggio: Guidance and control of a reconfigurable unmanned underwater vehicle, Cont. Eng. Prac. 8(1), 21–37 (2000)CrossRefGoogle Scholar
  49. 44.49.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco: A novel adaptive control law for underwater vehicles, IEEE Trans. Contr. Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar
  50. 44.50.
    G. Antonelli: Underwater robots, Motion and force control of vehicle-manipulator systems. In: Tracts in Advanced Robotics, 2nd edn., ed. by G. Antonelli (Springer, Berlin, Heidelberg 2006)Google Scholar
  51. 44.51.
    S.B. Williams: A terrain aided tracking algorithm for marine systems, 4th Int. Conf. Field Service Robot. (2003) pp. 55–60Google Scholar
  52. 44.52.
    M. Dunbabin, P. Corke, G. Buskey: Low-cost vision-based AUV guidance system for reef navigation, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 7–12Google Scholar
  53. 44.53.
    J.J. Leonard, H.J.S. Feder: Decoupled stochastic mapping, IEEE J. Oceanic Eng. 26(4), 561–571 (2001)CrossRefGoogle Scholar
  54. 44.54.
    S. Williams, G. Dissanayake, H. Durrant–Whyte: Towards terrain-aided navigation for underwater robotics, Adv. Robot. 15(5), 533–549 (2001)CrossRefGoogle Scholar
  55. 44.55.
    P. Newman, J. Leonard: Pure range-only sub-sea SLAM, IEEE Int. Conf. Robot. Autom. (Taipei 2003) pp. 1921–1926Google Scholar
  56. 44.56.
    T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Auton. Robot. 3(2), 213–232 (1996)CrossRefGoogle Scholar
  57. 44.57.
    J.S. Ferguson, A. Pope, B. Butler, R. Verrall: Theseus AUV – two record breaking missions, Sea Technol. Mag. 40, 65–70 (1999)Google Scholar
  58. 44.58.
    A. Alessandri, M. Caccia, G. Veruggio: Fault detection of actuator faults in unmanned underwater vehicles, Cont. Eng. Prac. 7, 357–368 (1999)CrossRefGoogle Scholar
  59. 44.59.
    K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle – ODIN: an experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)CrossRefzbMATHGoogle Scholar
  60. 44.60.
    G. Antonelli: A survey of fault detection/tolerance strategies for AUVs and ROVs. Recent advances. In: Fault Diagnosis and Tolerance for Mechatronic Systems, Springer Tracts in Advanced Robotics, ed. by F. Caccavale, L. Villani (Springer, Berling, Heidelberg 2002) pp. 109–127Google Scholar
  61. 44.61.
    T.K. Podder, G. Antonelli, N. Sarkar: An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle, J. Adv. Robot. 15, 501–520 (2001)CrossRefGoogle Scholar
  62. 44.62.
    M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, G. Veruggio: Experiences on actuator fault detection, diagnosis and accomodation for ROVs, Int. Symp. Unmanned Untethered Submersible Technol. (Durham, New Hampshire 2001)Google Scholar
  63. 44.63.
    E. Fiorelli, P. Bhatta, N.E. Leonard, I. Shulman: Adaptive sampling using feedback control of an autonomous underwater glider fleet, Int. Symp. Unmanned Untethered Submersible Technol. (Durham, New Hampshire 2003)Google Scholar
  64. 44.64.
    C.J. Cannell, D.J. Stilwell: A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles, Proc. Oceans Conf. (Brest 2005) pp. 1514–1521Google Scholar
  65. 44.65.
    S. Kalantar, U. Zimmer: Distributed shape control of homogeneous swarms of autonomous underwater vehicles, Auton. Robot. 22(1), 37–53 (2006)CrossRefGoogle Scholar
  66. 44.66.
    A. Pascoal, C. Silvestre, P. Oliveira: Vehicle and mission control of single and multiple autonomous marine robots. In: Advances in Unmanned Marine Vehicles, IEEE Control Engineering, ed. by G. Roberts, R. Sutton (Peregrinus, New York 2006) pp. 353–386Google Scholar
  67. 44.67.
    J. Yuh: Exploring the mysterious underwater world with robots, 6th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Girona 2003)Google Scholar
  68. 44.68.
    T. Ura: Steps to intelligent AUVs, 6th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Girona 2003)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Automazione, Ingegneria dellʼInformazione e Matematica IndustrialeUniversità degli Studi di CassinoCassinoItaly
  2. 2.Department of Engineering CyberneticsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations