• Blake Hannaford
  • Allison M. Okamura


The word haptics, believed to be derived from the Greek word haptesthai, means related to the sense of touch. In the psychology and neuroscience literature, haptics is the study of human touch sensing, specifically via kinesthetic (force/position) and cutaneous (tactile) receptors, associated with perception and manipulation. In the robotics and virtual reality literature, haptics is broadly defined as real and simulated touch interactions between robots, humans, and real, remote, or simulated environments, in various combinations. This chapter focuses on the use of specialized robotic devices and their corresponding control, known as haptic interfaces, that allow human operators to experience the sense of touch in remote (teleoperated) or simulated (virtual) environments.


Virtual Environment Virtual Object Haptic Feedback Haptic Device Just Noticeable Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



computer-aided design


exploratory procedures


finite element


haptic device


haptic interaction point


human operator


Institute of Electrical and Electronics Engineers


just noticeable difference


microelectromechanical systems


non-uniform rational B-spline




receiver operating curve


standard development kit


shape-memory alloy


  1. 30.1.
    G.A. Gescheider: Psychophysics: The Fundamentals (Lawrence Erlbaum, New York 1985)Google Scholar
  2. 30.2.
    K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation. I. Finger force feedback, Proc. Virtual Real. Annu. Int. Symp. (1993) pp. 263–270Google Scholar
  3. 30.3.
    M.A. Srinivasan, R.H. LaMotte: Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad, J. Neurosci. 7(6), 1682–1697 (1987)Google Scholar
  4. 30.4.
    R.H. LaMotte, R.F. Friedman, C. Lu, P.S. Khalsa, M.A. Srinivasan: Raised object on a planar surface stroked across the fingerpad: Responses of cutaneous mechanoreceptors to shape and orientation, J. Neurophysiol. 80, 2446–2466 (1998)Google Scholar
  5. 30.5.
    R.H. LaMotte, J. Whitehouse: Tactile detection of a dot on a smooth surface: peripheral neural events, J. Neurophysiol. 56, 1109–1128 (1986)Google Scholar
  6. 30.6.
    R. Hayashi, A. Miyake, H. Jijiwa, S. Watanabe: Postureal readjustment to body sway induced by vibration in man, Exp. Brain Res. 43, 217–225 (1981)CrossRefGoogle Scholar
  7. 30.7.
    G.M. Goodwin, D.I. McCloskey, P.B.C. Matthews: The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement an the effects of paralysing joint afferents, Brain 95, 705–748 (1972)CrossRefGoogle Scholar
  8. 30.8.
    G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 468–472 (2005)CrossRefGoogle Scholar
  9. 30.9.
    L.A. Jones: Perception and control of finger forces, DSC (1998) pp. 133–137Google Scholar
  10. 30.10.
    S. Lederman, R. Klatzky: Hand movements: a window into haptic object recognition, Cognit. Psychol. 19(3), 342–368 (1987)CrossRefGoogle Scholar
  11. 30.11.
    R. Klatzky, S. Lederman, V. Metzger: Identifying objects by touch, An `expert systemʼ, Percept. Psychophys. 37(4), 299–302 (1985)CrossRefGoogle Scholar
  12. 30.12.
    S. Lederman, R. Klatzky: Haptic classification of common objects: Knowledge-driven exploration, Cognit. Psychol. 22, 421–459 (1990)CrossRefGoogle Scholar
  13. 30.13.
    O.S. Bholat, R.S. Haluck, W.B. Murray, P.G. Gorman, T.M. Krummel: Tactile feedback is present during minimally invasive surgery, J. Am. Coll. Surg. 189(4), 349–355 (1999)CrossRefGoogle Scholar
  14. 30.14.
    C. Basdogan, S. De, J. Kim, M. Muniyandi, M.A. Srinivasan: Haptics in minimally invasive surgical simulation and training, IEEE Comput. Graphics Appl. 24(2), 56–64 (2004)CrossRefGoogle Scholar
  15. 30.15.
    P. Strom, L. Hedman, L. Sarna, A. Kjellin, T. Wredmark, L. Fellander-Tsai: Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents, Surg. Endosc. 20(9), 1383–1388 (2006)CrossRefGoogle Scholar
  16. 30.16.
    A. Liu, F. Tendick, K. Cleary, C. Kaufmann: A survey of surgical simulation: applications, technology, and education, Presence Teleop. Virt. Environ. 12(6), 599–614 (2003)CrossRefGoogle Scholar
  17. 30.17.
    R.M. Satava: Accomplishments and challenges of surgical simulation, Surg. Endosc. 15(3), 232–241 (2001)CrossRefGoogle Scholar
  18. 30.18.
    W.A. McNeely, K.D. Puterbaugh, J.J. Troy: Six degree-of-freedom haptic rendering using voxel sampling, Proc. SIGGRAPH 99 (1999) pp. 401–408Google Scholar
  19. 30.19.
    SensAble Technologies: (Woburn 2007)
  20. 30.20.
    Immersion Corporation: (San Jose 2007)
  21. 30.21.
    T.H. Massie, J.K. Salisbury: The phantom haptic interface: A device for probing virtual objects, Proc. ASME Dyn. Syst. Contr. Div., Vol. 55 (1994) pp. 295–299Google Scholar
  22. 30.22.
    Novint Technologies: (Albuquerque 2007)
  23. 30.23.
    M.C. Cavusoglu, D. Feygin, F. Tendick: A critical study of the mechanical and electrical properties of the PHANToM haptic interface and improvements for high-performance control, Presence 11(6), 555–568 (2002)CrossRefGoogle Scholar
  24. 30.24.
    R.Q. van der Linde, P. Lammerste, E. Frederiksen, B. Ruiter: The HapticMaster, a new high-performance haptic interface, Proc. Eurohaptics Conf. (2002) pp. 1–5Google Scholar
  25. 30.25.
    T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefMathSciNetGoogle Scholar
  26. 30.26.
    J.K. Salibury, J.T. Craig: Articulated hands: Force control and kinematics issues, Int. J. Robot. Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  27. 30.27.
    P. Buttolo, B. Hannaford: Pen based force display for precision manipulation of virtual environments, Proc. VRAIS-95 (1995) pp. 217–225Google Scholar
  28. 30.28.
    P. Buttolo, B. Hannaford: Advantages of actuation redundancy for the design of haptic displays, Proc. ASME Fourth Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst., Vol. DSC-57-2 (1995) pp. 623–630Google Scholar
  29. 30.29.
    T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)Google Scholar
  30. 30.30.
    S. Venema, B. Hannaford: A probabilistic representation of human workspace for use in the design of human interface mechanisms, IEEE Trans. Mechatron. 6(3), 286–294 (2001)CrossRefGoogle Scholar
  31. 30.31.
    H. Yano, M. Yoshie, H. Iwata: development of a non-grounded haptic interface using the gyro effect, Proc. 11th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2003) pp. 32–39Google Scholar
  32. 30.32.
    C. Swindells, A. Unden, T. Sang: TorqueBAR: an ungrounded haptic feedback device, Proc. 5th Int. Conf. Multimodal Interf. (2003) pp. 52–59Google Scholar
  33. 30.33.
    Immersion Corporation: CyberGrasp – Groundbreaking haptic interface for the entire hand (last accessed 2006)
  34. 30.34.
    C. Richard, M.R. Cutkosky: Contact force perception with an ungrounded haptic interface, 1997 ASME IMECE 6th Annu. Symp. Haptic Interf. (1997)Google Scholar
  35. 30.35.
    J.J. Abbott, A.M. Okamura: Effects of position quantization and sampling rate on virtual-wall passivity, TRO 21(5), 952–964 (2005)Google Scholar
  36. 30.36.
    S. Usui, I. Amidror: Digital low-pass differentiation for biological signal processing, IEEE Trans. Biomedic. Eng. BME-29(10), 686–693 (1982)CrossRefGoogle Scholar
  37. 30.37.
    P. Bhatti, B. Hannaford: Single chip optical encoder based velocity measurement system, IEEE Trans. Contr. Syst. Technol. 5(6), 654–661 (1997)CrossRefGoogle Scholar
  38. 30.38.
    A.M. Okamura, C. Richard, M.R. Cutkosky: Feeling is believing: Using a force-feedback joystick to teach dynamic systems, ASEE J. Eng. Educ. 92(3), 345–349 (2002)Google Scholar
  39. 30.39.
    John Hopkins University: (Baltimore)
  40. 30.40.
    C.H. Ho, C. Basdogan, M.A. Srinivasan: Efficient point-based rendering techniques for haptic display of virtual objects, Presence 8, 477–491 (1999)CrossRefGoogle Scholar
  41. 30.41.
    C.B. Zilles, J.K. Salisbury: A constraint-based god-object method for haptic display, IROS (1995) pp. 146–151Google Scholar
  42. 30.42.
    J.E. Colgate, M.C. Stanley, J.M. Brown: Issues in the haptic display of tool use, IROS (1995) pp. 140–145Google Scholar
  43. 30.43.
    D. Ruspini, O. Khatib: Haptic display for human interaction with virtual dynamic environments, J. Robot. Syst. 18(12), 769–783 (2001)CrossRefzbMATHGoogle Scholar
  44. 30.44.
    A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, D. Manocha: Six degree-of-freedom haptic display of polygonal models, Proc. Vis. 2000 (2000) pp. 139–146Google Scholar
  45. 30.45.
    D.E. Johnson, P. Willemsen, E. Cohen: 6-DOF haptic rendering using spatialized normal cone search, Trans. Vis. Comput. Graphics 11(6), 661–670 (2005)CrossRefGoogle Scholar
  46. 30.46.
    M.A. Otaduy, M.C. Lin: A modular haptic rendering algorithm for stable and transparent 6-DOF manipulation, IEEE Trans. Vis. Comput. Graphics 22(4), 751–762 (2006)Google Scholar
  47. 30.47.
    M.C. Lin, M.A. Otaduy: Sensation-preserving haptic rendering, IEEE Comput. Graphics Appl. 25(4), 8–11 (2005)CrossRefGoogle Scholar
  48. 30.48.
    T. Thompson, E. Cohen: Direct haptic rendering of complex trimmed NURBS models, 8th Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (1999)Google Scholar
  49. 30.49.
    S.P. DiMaio, S.E. Salcudean: Needle insertion modeling and simulation, IEEE Trans. Robot. Autom. 19(5), 864–875 (2003)CrossRefGoogle Scholar
  50. 30.50.
    B. Hannaford: Stability and performance tradeoffs in bi-lateral telemanipulation, Proc. IEEE Int. Conf. Robot. Autom., Vol. 3 (1989) pp. 1764–1767Google Scholar
  51. 30.51.
    B. Gillespie, M. Cutkosky: Stable user-specific rendering of the virtual wall, Proc. ASME Int. Mech. Eng. Conf. Expo., Vol. DSC-58 (1996) pp. 397–406Google Scholar
  52. 30.52.
    R.J. Adams, B. Hannaford: Stable haptic interaction with virtual environments, IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)CrossRefGoogle Scholar
  53. 30.53.
    B.E. Miller, J.E. Colgate, R.A. Freeman: Passive implementation for a class of static nonlinear environments in haptic display, Proc. IEEE Int. Conf. Robot. Automation (1999) pp. 2937–2942Google Scholar
  54. 30.54.
    B.E. Miller, J.E. Colgate, R.A. Freeman: Computational delay and free mode environment design for haptic display, Proc. ASME Dyn. Syst. Cont. Div. (1999)Google Scholar
  55. 30.55.
    B.E. Miller, J.E. Colgate, R.A. Freeman: Environment delay in haptic systems, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 2434–2439Google Scholar
  56. 30.56.
    S.E. Salcudean, T.D. Vlaar: On the emulation of stiff walls and static friction with a magnetically levitated input/output device, ICRA, Vol. 119 (1997) pp. 127–132Google Scholar
  57. 30.57.
    P. Wellman, R.D. Howe: Towards realistic vibrotactile display in virtual environments, Proc. 4th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. ASME Int. Mech. Eng. Congress Expo. (1995) pp. 713–718Google Scholar
  58. 30.58.
    K. MacLean: The haptic camera: A technique for characterizing and playing back haptic properties of real environments, Proc. 5th Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. ASME/IMECE (1996)Google Scholar
  59. 30.59.
    A.M. Okamura, J.T. Dennerlein, M.R. Cutkosky: Reality-based models for vibration feedback in virtual environments, ASME/IEEE Trans. Mechatron. 6(3), 245–252 (2001)CrossRefGoogle Scholar
  60. 30.60.
    K.J. Kuchenbecker, J. Fiene, G. Niemeyer: Improving contact realism through event-based haptic feedback, IEEE Trans. Vis. Comput. Graphics 12(2), 219–230 (2006)CrossRefGoogle Scholar
  61. 30.61.
    D.A. Kontarinis, R.D. Howe: Tactile display of vibratory information in teleoperation and virtual environments, Presence 4(4), 387–402 (1995)Google Scholar
  62. 30.62.
    J.T. Dennerlein, P.A. Millman, R.D. Howe: Vibrotactile feedback for industrial telemanipulators, Proc. ASME Dyn. Syst. Contr. Div., Vol. 61 (1997) pp. 189–195Google Scholar
  63. 30.63.
    A.M. Okamura, J.T. Dennerlein, R.D. Howe: Vibration feedback models for virtual environments, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 674–679Google Scholar
  64. 30.64.
    R.W. Lindeman, Y. Yanagida, H. Noma, K. Hosaka: Wearable vibrotactile systems for virtual contact and information display, Virt. Real. 9(2-3), 203–213 (2006)CrossRefGoogle Scholar
  65. 30.65.
    C. Ho, H.Z. Tan, C. Spence: Using spatial vibrotactile cues to direct visual attention in driving scenes, Transp. Res. F Traffic Psychol. Behav. 8, 397–412 (2005)CrossRefGoogle Scholar
  66. 30.66.
    H.Z. Tan, R. Gray, J.J. Young, R. Traylor: A haptic back display for attentional and directional cueing, Haptics-e Electron. J. Haptics Res. 3(1), 20 (2003)Google Scholar
  67. 30.67.
    C2 Tactor: Engineering Acoustic Inc.: (Casselberry 2007)
  68. 30.68.
    W.R. Provancher, M.R. Cutkosky, K.J. Kuchenbecker, G. Niemeyer: Contact location display for haptic perception of curvature and object motion, Int. J. Robot. Res. 24(9), 691–702 (2005)CrossRefGoogle Scholar
  69. 30.69.
    R.S. Johansson: Sensory input and control of grip, Novartis Foundat. Symp., Vol. 218 (1998) pp. 45–59Google Scholar
  70. 30.70.
    K.O. Johnson, J.R. Phillips: A rotating drum stimulator for scanned embossed patterns and textures across the skin, J. Neurosci. Methods 22, 221–231 (1998)CrossRefGoogle Scholar
  71. 30.71.
    M.A. Salada, J.E. Colgate, P.M. Vishton, E. Frankel: Two experiments on the perception of slip at the fingertip, 12th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2004) pp. 472–476Google Scholar
  72. 30.72.
    R.J. Webster III, T.E. Murphy, L.N. Verner, A.M. Okamura: A novel two-dimensional tactile slip display: Design, kinematics and perceptual experiment, ACM Trans. Appl. Percept. 2(2), 150–165 (2005)CrossRefGoogle Scholar
  73. 30.73.
    N.G. Tsagarakis, T. Horne, D.G. Caldwell: SLIP AESTHEASIS: a portable 2D slip/skin stretch display for the fingertip, First Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2005) pp. 214–219Google Scholar
  74. 30.74.
    L. Winfield, J. Glassmire, J. E. Colgate, M. Peshkin: T-PaD: Tactile Pattern Display through Variable Friction Reduction. Second Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2007) pp. 421-426Google Scholar
  75. 30.75.
    K.O. Johnson, J.R. Phillips: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition, J. Neurophysiol. 46(6), 1177–1192 (1981)Google Scholar
  76. 30.76.
    N. Asamura, T. Shinohara, Y. Tojo, N. Koshida, H. Shinoda: Necessary spatial resolution for realistic tactile feeling display, IEEE Int. Conf. Robot. Autom. (2001) pp. 1851–1856Google Scholar
  77. 30.77.
    G. Moy, U. Singh, E. Tan, R.S. Fearing: Human psychophysics for teletaction system design, Haptics-e Electron. J. Haptics Res. 1(3) (2000)Google Scholar
  78. 30.78.
    W.J. Peine, R.D. Howe: Do humans sense finger deformation or distributed pressure to detect lumps in soft tissue, Proc. ASME Dyn. Syst. Contr. Div. ASME Int. Mech. Eng. Congress Expo., Vol. DSC-64 (1998) pp. 273–278Google Scholar
  79. 30.79.
    C.R. Wagner, S.J. Lederman, R.D. Howe: Design and performance of a tactile shape display using RC servomotors, Haptics-e Electron. J. Haptics Res. 3(4) (2004)Google Scholar
  80. 30.80.
    K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation: Part II, Finger touch feedback, Proc. IEEE Virt. Real. Annu. Int. Symp. (1993) pp. 271–279Google Scholar
  81. 30.81.
    K.A. Kaczmarek, P. Bach-Y-Rita: Tactile displays. In: Virtual Environments and Advanced Interface Design, ed. by W. Barfield, T.A. Furness (Oxford Univ. Press, Oxford 1995) pp. 349–414Google Scholar
  82. 30.82.
    M. Shimojo: Tactile sensing and display, Trans. Inst. Electr. Eng. Jpn. E 122, 465–468 (2002)Google Scholar
  83. 30.83.
    S. Tachi: Roles of tactile display in virtual reality, Trans. Inst. Electr. Eng. Jpn. E 122, 461–464 (2002)Google Scholar
  84. 30.84.
    P. Kammermeier, G. Schmidt: Application-specific evaluation of tactile array displays for the human fingertip, IEEE/RSJ Int. Conf. Intell. Robot. Syst. Int. Conf. Intell. Robot. Syst. (2002)Google Scholar
  85. 30.85.
    S.A. Wall, S. Brewster: Sensory substitution using tactile pin arrays: human factors, technology and applications, Signal Process. 86(12), 3674–3695 (2006)CrossRefzbMATHGoogle Scholar
  86. 30.86.
    J.H. Killebrew, S.J. Bensmaia, J.F. Dammann, P. Denchev, S.S. Hsiao, J.C. Craig, K.O. Johnson: A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli, J. Neurosci. Methods 161(1), 62–74 (2007)CrossRefGoogle Scholar
  87. 30.87.
    R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)CrossRefGoogle Scholar
  88. 30.88.
    P.S. Wellman, W.J. Peine, G. Favalora, R.D. Howe: Mechanical design and control of a high-bandwidth shape memory alloy tactile display, Exp. Robot. V 232, 56–66 (1998)CrossRefGoogle Scholar
  89. 30.89.
    V. Hayward, M. Cruz-Hernandez: Tactile display device using distributed lateral skin stretch, Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (ASME IMECE), Vol. DSC-69-2 (2000) pp. 1309–1314Google Scholar
  90. 30.90.
    Q. Wang, V. Hayward: Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation, 14th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2006) pp. 67–72Google Scholar
  91. 30.91.
    Q. Wang, V. Hayward: In vivo biomechanics of the fingerpad skin under local tangential traction, J. Biomech. 40(4), 851–860 (2007)CrossRefGoogle Scholar
  92. 30.92.
    V. Levesque, J. Pasquero, V. Hayward: Braille display by lateral skin deformation with the STReSS2 tactile transducer, Second Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2007) pp. 115–120Google Scholar
  93. 30.93.
    K. Drewing, M. Fritschi, R. Zopf, M.O. Ernst, M. Buss: First evaluation of a novel tactile display exerting shear force via lateral displacement, ACM Trans. Appl. Percept. 2(2), 118–131 (2005)CrossRefGoogle Scholar
  94. 30.94.
    K.A. Kaczmarek, J.G. Webster, P. Bach-Y-Rita, W.J. Tompkins: Electrotactile and vibrotactile displays for sensory substitution systems, IEEE Trans. Biomed. Eng. 38, 1–16 (1991)CrossRefGoogle Scholar
  95. 30.95.
    N. Asamura, N. Yokoyama, H. Shinoda: Selectively stimulating skin receptors for tactile display, IEEE Comput. Graphics Appl. 18, 32–37 (1998)CrossRefGoogle Scholar
  96. 30.96.
    H.-N. Ho, L.A. Jones: Contribution of thermal cues to material discrimination and localization, Percept. Psychophys. 68, 118–128 (2006)CrossRefGoogle Scholar
  97. 30.97.
    H.-N. Ho, L.A. Jones: Development and evaluation of a thermal display for material identification and discrimination, ACM Trans. Appl. Percept. 4(2), 118–128 (2007)CrossRefGoogle Scholar
  98. 30.98.
    D.G. Caldwell, C. Gosney: Enhanced tactile feedback (tele-taction) using a multi-functional sensory system, IEEE Int. Conf. Robot. Autom. (1993) pp. 955–960Google Scholar
  99. 30.99.
    D.G. Caldwell, S. Lawther, A. Wardle: Tactile perception and its application to the design of multi-modal cutaneous feedback systems, IEEE Int. Conf. Robot. Autom. (1996) pp. 3215–3221Google Scholar
  100. 30.100.
    C.G. Burdea: Force and Touch Feedback for Virtual Reality (Wiley Interscience, New York 1996)Google Scholar
  101. 30.101.
    M.C. Lin, M.A. Otaduy (Eds.): Haptic Rendering: Foundations, Algorithms, and Applications (AK Peters, Ltd., London 2008)Google Scholar
  102. 30.102.
    V. Hayward, K.E. MacLean: Do it yourself haptics, Part-I, IEEE Robot. Autom. Mag. 14(4), 88–104 (2007)CrossRefGoogle Scholar
  103. 30.103.
    K.E. MacLean, V. Hayward: Do It Yourself Haptics, Part-II. IEEE Robot Autom Mag, to appear (2008 March issue)Google Scholar
  104. 30.104.
    V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant, G. Robles-De-La-Torre: Haptic interfaces and devices, Sensor Rev. 24(1), 16–29 (2004)CrossRefGoogle Scholar
  105. 30.105.
    K. Salisbury, F. Conti, F. Barbagli: Haptic rendering: introductory concepts, IEEE Comput. Graphics Applicat. 24(2), 24–32 (2004)CrossRefGoogle Scholar
  106. 30.106.
    V. Hayward, K.E. MacLean: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store, Brain Res. Bull. (2007)Google Scholar
  107. 30.107.
    G. Robles-De-La-Torre: The importance of the sense of touch in virtual and real environments, IEEE Multimedia 13(3), 24–30 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations