Kinematically Redundant Manipulators

  • Stefano ChiaveriniEmail author
  • Giuseppe OrioloEmail author
  • Ian D. WalkerEmail author


This chapter focuses on redundancy resolution schemes, i.e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different first-order methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e.g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue, e.g., for industrial applications in which a redundant manipulator is used to execute a repetitive task. The special class of hyperredundant manipulators is analyzed in detail. Suggestions for further reading are given in a final section.


Task Space Joint Velocity Redundant Manipulator Algorithmic Singularity Inverse Kinematic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Association of Computing Machinery


active cord mechanism


closed-loop inverse kinematics


Deutsches Zentrum für Luft- und Raumfahrt


degree of freedom


Jet Propulsion Laboratory


National Aeronautics and Space Agency


selective compliance assembly robot arm


special-purpose dexterous manipulator


singular value decomposition


two-point boundary value problem


  1. 11.1.
    D.E. Whitney: Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)CrossRefMathSciNetGoogle Scholar
  2. 11.2.
    G.H. Golub, C. Reinsch: Singular value decomposition and least-squares solutions, Numer. Math. 14, 403–420 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 11.3.
    A.A. Maciejewski, C.A. Klein: The singular value decomposition: computation and applications to robotics, Int. J. Robot. Res. 8(6), 63–79 (1989)CrossRefGoogle Scholar
  4. 11.4.
    T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefMathSciNetGoogle Scholar
  5. 11.5.
    C.A. Klein, B.E. Blaho: Dexterity measures for the design and control of kinematically redundant manipulators, Int. J. Robot. Res. 6(2), 72–83 (1987)CrossRefGoogle Scholar
  6. 11.6.
    A.A. Maciejewski, C.A. Klein: Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, J. Robot. Syst. 5, 527–552 (1988)CrossRefGoogle Scholar
  7. 11.7.
    S. Chiaverini: Estimate of the two smallest singular values of the Jacobian matrix: application to damped least-squares inverse kinematics, J. Robot. Syst. 10, 991–1008 (1993)CrossRefzbMATHGoogle Scholar
  8. 11.8.
    O. Egeland, M. Ebdrup, S. Chiaverini: Sensory control in singular configurations – application to visual servoing, IEEE Int. Workshop Intell. Motion Contr. (Istanbul 1990) pp. 401–405Google Scholar
  9. 11.9.
    Y. Nakamura, H. Hanafusa: Inverse kinematic solutions with singularity robustness for robot manipulator control, Trans. ASME – J. Dyn. Syst. Meas. Contr. 108, 163–171 (1986)CrossRefzbMATHGoogle Scholar
  10. 11.10.
    D.E. Whitney: The mathematics of coordinated control of prosthetic arms and manipulators, Trans. ASME – J. Dyn. Syst. Meas. Contr. 94, 303–309 (1972)CrossRefGoogle Scholar
  11. 11.11.
    T.L. Boullion, P.L. Odell: Generalized Inverse Matrices (Wiley-Interscience, New York 1971)zbMATHGoogle Scholar
  12. 11.12.
    C.R. Rao, S.K. Mitra: Generalized Inverse of Matrices and its Applications (Wiley, New York 1971)zbMATHGoogle Scholar
  13. 11.13.
    A. Ben-Israel, T.N.E. Greville: Generalized Inverses: Theory and Applications (Wiley, New York 1974)zbMATHGoogle Scholar
  14. 11.14.
    R.H. Taylor: Planning and execution of straight-line manipulator trajectories, IBM J. Res. Dev. 23, 424–436 (1979)CrossRefGoogle Scholar
  15. 11.15.
    M. Sampei, K. Furuta: Robot control in the neighborhood of singular points, IEEE J. Robot. Autom. 4, 303–309 (1988)CrossRefGoogle Scholar
  16. 11.16.
    E.W. Aboaf, R.P. Paul: Living with the singularity of robot wrists, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 1713–1717Google Scholar
  17. 11.17.
    S. Chiaverini, O. Egeland: A solution to the singularity problem for six-joint manipulators, IEEE Int. Conf. Robot. Autom. (Cincinnati 1990) pp. 644–649Google Scholar
  18. 11.18.
    S. Chiaverini, O. Egeland: An efficient pseudo-inverse solution to the inverse kinematic problem for six-joint manipulators, Model. Identif. Contr. 11(4), 201–222 (1990)CrossRefMathSciNetGoogle Scholar
  19. 11.19.
    O. Khatib: A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE J. Robot. Autom. 3, 43–53 (1987)CrossRefGoogle Scholar
  20. 11.20.
    C.W. Wampler II: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods, IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986)CrossRefzbMATHGoogle Scholar
  21. 11.21.
    S. Chiaverini, O. Egeland, R.K. Kanestrøm: Achieving user-defined accuracy with damped least-squares inverse kinematics, 5th Int. Conf. Adv. Robot. (ʼ91 ICAR) (Pisa 1991) pp. 672–677Google Scholar
  22. 11.22.
    J.R. Sagli: Coordination of Motion in Manipulators with Redundant Degrees of Freedom. Ph.D. Thesis (Institutt for Teknisk Kibernetikk, Norges Tekniske Høgskole, Trondheim, N 1991)Google Scholar
  23. 11.23.
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy, Int. J. Robot. Res. 10(4), 410–425 (1991)CrossRefGoogle Scholar
  24. 11.24.
    B. Siciliano: A closed-loop inverse kinematic scheme for on-line joint-based robot control, Robotica 8, 231–243 (1990)CrossRefGoogle Scholar
  25. 11.25.
    Z.R. Novaković, B. Siciliano: A new second-order inverse kinematics solution for redundant manipulators. In: Advances in Robot Kinematics, ed. by S. Stifter, J. Lenarčič (Springer-Verlag, Vienna, Austria 1991) pp. 408–415Google Scholar
  26. 11.26.
    A. Balestrino, G. De Maria, L. Sciavicco: Robust control of robotic manipulators, 9th IFAC World Congress (Budapest 1984) pp. 80–85Google Scholar
  27. 11.27.
    W.A. Wolovich, H. Elliott: A computational technique for inverse kinematics, 23rd IEEE Conf. Decis. Contr. (Las Vegas 1984) pp. 1359–1363Google Scholar
  28. 11.28.
    L. Sciavicco, B. Siciliano: A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE J. Robot. Autom. 4, 403–410 (1988)CrossRefGoogle Scholar
  29. 11.29.
    J. Baillieul, J. Hollerbach, R.W. Brockett: Programming and control of kinematically redundant manipulators, 23th IEEE Conf. Decis. Contr. (Las Vegas 1984) pp. 768–774Google Scholar
  30. 11.30.
    A. Liégeois: Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Syst. Man Cybern. 7, 868–871 (1977)CrossRefzbMATHGoogle Scholar
  31. 11.31.
    O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, IEEE Int. Conf. Robot. Autom. (St. Louis 1985) pp. 500–505Google Scholar
  32. 11.32.
    J.C. Latombe: Robot Motion Planning (Kluwer Academic, Boston 1991)Google Scholar
  33. 11.33.
    D.G. Luenberger: Linear and Nonlinear Programming (Addison-Wesley, Reading 1984)zbMATHGoogle Scholar
  34. 11.34.
    A. De Luca, G. Oriolo: Issues in acceleration resolution of robot redundancy, 3rd IFAC Symp. Robot Contr. (Vienna 1991) pp. 665–670Google Scholar
  35. 11.35.
    J. Baillieul: Kinematic programming alternatives for redundant manipulators, IEEE Int. Conf. Robot. Autom. (St. Louis 1985) pp. 722–728Google Scholar
  36. 11.36.
    P.H. Chang: A closed-form solution for inverse kinematics of robot manipulators with redundancy, IEEE J. Robot. Autom. 3, 393–403 (1987)CrossRefGoogle Scholar
  37. 11.37.
    J. Baillieul: Avoiding obstacles and resolving kinematic redundancy, IEEE Int. Conf. Robot. Autom. (San Francisco 1986) pp. 1698–1704Google Scholar
  38. 11.38.
    L. Sciavicco, B. Siciliano: Solving the inverse kinematic problem for robotic manipulators, 6th CISM-IFToMM Symp. Theory Practice Robots Manip. (Kraków 1986) pp. 107–114Google Scholar
  39. 11.39.
    L. Sciavicco, B. Siciliano: A dynamic solution to the inverse kinematic problem for redundant manipulators, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 1081–1087Google Scholar
  40. 11.40.
    O. Egeland: Task-space tracking with redundant manipulators, IEEE J. Robot. Autom. 3, 471–475 (1987)CrossRefGoogle Scholar
  41. 11.41.
    H. Seraji: Configuration control of redundant manipulators: theory and implementation, IEEE J. Robot. Autom. 5, 472–490 (1989)CrossRefGoogle Scholar
  42. 11.42.
    J. Baillieul: A constraint oriented approach to inverse problems for kinematically redundant manipulators, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 1827–1833Google Scholar
  43. 11.43.
    S.L. Chiu: Control of redundant manipulators for task compatibility, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 1718–1724Google Scholar
  44. 11.44.
    H. Seraji, R. Colbaugh: Improved configuration control for redundant robots, J. Robot. Syst. 7, 897–928 (1990)CrossRefzbMATHGoogle Scholar
  45. 11.45.
    O. Egeland, J.R. Sagli, I. Spangelo, S. Chiaverini: A damped least-squares solution to redundancy resolution, IEEE Int. Conf. Robot. Autom. (Sacramento 1991) pp. 945–950Google Scholar
  46. 11.46.
    A.A. Maciejewski, C.A. Klein: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, Int. J. Robot. Res. 4(3), 109–117 (1985)CrossRefGoogle Scholar
  47. 11.47.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa: Task-priority based redundancy control of robot manipulators, Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  48. 11.48.
    H. Hanafusa, T. Yoshikawa, Y. Nakamura: Analysis and control of articulated robot arms with redundancy, IFAC 8th Triennal World Congress (Kyoto 1981) pp. 78–83Google Scholar
  49. 11.49.
    Y. Nakamura, H. Hanafusa: Task priority based redundancy control of robot manipulators. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 155–162Google Scholar
  50. 11.50.
    S. Chiaverini: Task-priority redundancy resolution with robustness to algorithmic singularities, 4th IFAC Symp. Robot Contr. (Capri 1994) pp. 393–399Google Scholar
  51. 11.51.
    S. Chiaverini: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators, IEEE Trans. Robot. Autom. 13, 398–410 (1997)CrossRefGoogle Scholar
  52. 11.52.
    K. Kazerounian, Z. Wang: Global versus local optimization in redundancy resolution of robotic manipulators, Int. J. Robot. Res. 7(5), 312 (1988)CrossRefGoogle Scholar
  53. 11.53.
    J.M. Hollerbach, K.C. Suh: Redundancy resolution of manipulators through torque optimization, IEEE J. Robot. Autom. 3, 308–316 (1987)CrossRefGoogle Scholar
  54. 11.54.
    J.M. Hollerbach, K.C. Suh: Local versus global torque optimization of redundant manipulators, IEEE Int. Conf. Robot. Autom. (Raleigh 1987) pp. 619–624Google Scholar
  55. 11.55.
    T. Shamir, Y. Yomdin: Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Trans. Autom. Contr. 33, 1004–1009 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 11.56.
    E. Paljug, T. Ohm, S. Hayati: The JPL serpentine robot: a 12-DoF system for inspection, IEEE Int. Conf. Robot. Autom. (1995) pp. 3143–3148Google Scholar
  57. 11.57.
    G.S. Chirikjian, J.W. Burdick: Design and experiments with a 30 DoF robot, IEEE Int. Conf. Robot. Autom. (1993) pp. 113–117Google Scholar
  58. 11.58.
    M.W. Hannan, I.D. Walker: Kinematics and the implementation of an elephantʼs trunk manipulator and other continuum style robots, J. Robot. Syst. 20(2), 45–63 (2003)CrossRefzbMATHGoogle Scholar
  59. 11.59.
    J.P. Karlen, J.M. Thompson, H.I. Vold, J.D. Farrell, P.H. Eismann: A dual-arm dexterous manipulator system with anthropomorphic kinematics, IEEE Int. Conf. Robot. Autom. (1990) pp. 368–373Google Scholar
  60. 11.60.
    G. Hirzinger, B. Brunner, R. Lampariello, J. Schott, B.M. Steinmetz: Advances in orbital robotics, IEEE Int. Conf. Robot. Autom. (2000) pp. 898–907Google Scholar
  61. 11.61.
    S. Hirose: Biologically inspired robots (Oxford Univ. Press, Oxford 1993)Google Scholar
  62. 11.62.
    G. Robinson, J.B.C. Davies: Continuum robots - a state of the art, IEEE Int. Conf. Robot. Autom. (Detroit 1999) pp. 2849–2854Google Scholar
  63. 11.63.
    V.C. Anderson, R.C. Horn: Tensor arm manipulator design, Trans. ASME 67-DE-57, 1–12 (1967)Google Scholar
  64. 11.64.
    R. Buckingham: Snake arm robots, Ind. Robot Int. J. 29(3), 242–245 (2002)CrossRefGoogle Scholar
  65. 11.65.
    B.A. Jones, I.D. Walker: Kinematics for multisection continuum robots, IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRefGoogle Scholar
  66. 11.66.
    H. Mochiyama, E. Shimemura, H. Kobayashi: Shape correspondence between a spatial curve and a manipulator with hyper degrees of freedom, IEEE Int. Conf. Robot. Autom. (1998) pp. 161–166Google Scholar
  67. 11.67.
    G.S. Chrikjian: Theory and Applications of Hyperredundant Robotic Mechanisms. Ph.D. Thesis (Department of Applied Mechanics, California Institute of Technology 1992)Google Scholar
  68. 11.68.
    I.A. Gravagne, I.D. Walker: Manipulability, force, and compliance analysis for planar continuum manipulators, IEEE Trans. Robot. Autom. 18(3), 263–273 (2002)CrossRefGoogle Scholar
  69. 11.69.
    G.S. Chirikjian, J.W. Burdick: A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10(3), 343–354 (1994)CrossRefGoogle Scholar
  70. 11.70.
    J. Salisbury, J. Abramowitz: Design and control of a redundant mechanism for small motion, IEEE Int. Conf. Robot. Autom. (St. Louis 1985) pp. 323–328Google Scholar
  71. 11.71.
    J. Baillieul: Design of kinematically redundant mechanisms, 24th IEEE Conf. Decis. Contr. (Ft. Lauderdale 1985) pp. 18–21Google Scholar
  72. 11.72.
    G.S. Chirikjian, J.W. Burdick: Design and experiments with a 30 DoF robot, IEEE Int. Conf. Robot. Autom. (Atlanta 1993) pp. 113–119Google Scholar
  73. 11.73.
    J. Angeles: The design of isotropic manipulator architectures in the presence of redundancies, Int. J. Robot. Res. 11(3), 196–201 (1992)CrossRefGoogle Scholar
  74. 11.74.
    A. Bowling, O. Khatib: Design of macro/mini manipulators for optimal dynamic performance, IEEE Int. Conf. Robot. Autom. (Albuquerqe 1997) pp. 449–454Google Scholar
  75. 11.75.
    J.M. Hollerbach: Optimum kinematic design for a seven degree of freedom manipulator. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 216–222Google Scholar
  76. 11.76.
    O. Egeland, J.R. Sagli, S. Hendseth, F. Wilhelmsen: Dynamic coordination in a manipulator with seven joints, IEEE Int. Conf. Robot. Autom. (Scottsdale 1989) pp. 125–130Google Scholar
  77. 11.77.
    S. Chiaverini, B. Siciliano, O. Egeland: Kinematic analysis and singularity avoidance for a seven-joint manipulator, Am. Contr. Conf. (San Diego 1990) pp. 2300–2305Google Scholar
  78. 11.78.
    D.R. Baker, C.W. Wampler: On the inverse kinematics of redundant manipulators, Int. J. Robot. Res. 7(2), 3–21 (1988)CrossRefGoogle Scholar
  79. 11.79.
    J.W. Burdick: On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds, IEEE Int. Conf. Robot. Autom. (Scottsdale 1989) pp. 264–270Google Scholar
  80. 11.80.
    S. Chiaverini, O. Egeland, R.K. Kanestrøm: Weighted damped least-squares in kinematic control of robotic manipulators, Adv. Robot. 7, 201–218 (1993)CrossRefGoogle Scholar
  81. 11.81.
    M. Kirćanski, M. Vukobratović: Trajectory planning for redundant manipulators in presence of obstacles, 5th CISM-IFToMM Symp. Theors Pract. Robots Manip. (Udine 1984) pp. 43–58Google Scholar
  82. 11.82.
    C.A. Klein: Use of redundancy in the design of robotic systems. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 207–214Google Scholar
  83. 11.83.
    J. Baillieul: Kinematic redundancy and the control of robots with flexible components, IEEE Int. Conf. Robot. Autom. (Nice 1992) pp. 715–721Google Scholar
  84. 11.84.
    J.D. English, A.A. Maciejewski: Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures, 14, 566–575 (1998)Google Scholar
  85. 11.85.
    I.D. Walker: The use of kinematic redundancy in reducing impact and contact effects in manipulation, IEEE Int. Conf. Robot. Autom. (Cincinnati 1990) pp. 434–439Google Scholar
  86. 11.86.
    M.W. Gertz, J.O. Kim, P.K. Khosla: Exploiting redundancy to reduce impact force, IEEE/RSJ Int. Workshop Intell. Robot. Syst. (Osaka 1991) pp. 179–184Google Scholar
  87. 11.87.
    T. Yoshikawa: Dynamic manipulability of robot manipulators, J. Robot. Syst. 2(1), 113–124 (1985)Google Scholar
  88. 11.88.
    G. Oriolo, M. Ottavi, M. Vendittelli: Probabilistic motion planning for redundant robots along given end-effector paths, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Lausanne 2002) pp. 1657–1662Google Scholar
  89. 11.89.
    D.N. Nenchev: Redundancy resolution through local optimization: a review, J. Robot. Syst. 6, 6 (1989)CrossRefGoogle Scholar
  90. 11.90.
    A. De Luca, G. Oriolo: The reduced gradient method for solving redundancy in robot arms, Robotersysteme 7(2), 117–122 (1991)Google Scholar
  91. 11.91.
    S. Seereeram, J.T. Wen: A global approach to path planning for redundant manipulators, IEEE Trans. Robot. Autom. 11(1), 152–160 (1995)CrossRefGoogle Scholar
  92. 11.92.
    A. De Luca, G. Oriolo, B. Siciliano: Robot redundancy resolution at the acceleration level, Lab. Robot. Autom. 4(2), 97–106 (1992)Google Scholar
  93. 11.93.
    O. Khatib: Inertial properties in robotics manipulation: an object-level framework, Int. J. Robot. Res. 14(1), 19–36 (1995)CrossRefGoogle Scholar
  94. 11.94.
    C.A. Klein, C.H. Huang: Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Trans. Syst. Man Cybern. 13, 245–250 (1983)Google Scholar
  95. 11.95.
    R. Mukherjee: Design of holonomic loops for repeatability in redundant manipulators, IEEE Int. Conf. Robot. Autom. (Nagoya 1985) pp. 2785–2790Google Scholar
  96. 11.96.
    A. De Luca, G. Oriolo: Nonholonomic behavior in redundant robots under kinematic control, IEEE Trans. Robot. Autom. 13(5), 776–782 (1997)CrossRefGoogle Scholar
  97. 11.97.
    B. Bayle, J.Y. Fourquet, M. Renaud: Manipulability of wheeled-mobile manipulators: application to motion generation, Int. J. Robot. Res. 22(7-8), 565–581 (2003)CrossRefGoogle Scholar
  98. 11.98.
    A. De Luca, G. Oriolo, P.R. Giordano: Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators, IEEE Int. Conf. Robot. Autom. (Orlando 2006) pp. 1867–1873Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Automazione, Ingegneria dellʼInformazione e Matematica IndustrialeUniversità degli Studi di CassinoCassinoItaly
  2. 2.Dipartimento di Informatica e Sistemistica ” A.Ruberti„Università degli Studi di Roma ” La Sapienza„RomaItaly
  3. 3.Department of Electrical and Computer EngineeringClemson UniversityClemsonUSA

Personalised recommendations