Data Analysis

  • Bernd JähneEmail author
  • Michael KlarEmail author
  • Markus JehleEmail author
Reference work entry
Part of the Springer Handbooks book series (SHB)


From the beginning of science, visual observation has played a major role. At that time, the only way to document the results of an experiment was by verbal description and manual drawings. The next major step was the invention of photography more than one and a half centuries ago, which enabled experimental results to be documented objectively. In experimental fluid mechanics, flow visualization techniques gave direct insight into complex flows, but it was very difficult and time consuming to extract quantitative measurements from photographs and films.

Nowadays, we are in the middle of a second revolution sparked by the rapid progress in both photonics and computer technology. Sensitive solid-state cameras are available that acquire digital image data, and standard personal computers and workstations have become powerful enough to process these data. These technologies are now available to any scientist or engineer. As a consequence, image processing has expanded and continues to expand rapidly from a few specialized applications into a standard scientific tool.

This chapter gives a brief presentation of some of the most important general image processing techniques that are required to process image data in experimental fluid mechanics. The second section (Sect. 25.2) deals with motion analysis. The most important methods are introduced and classified according to the fundamental principles, assumptions and approximations upon which they are based.





adaptive Gaussian windowing


brightness change constraint equation


charge-coupled device


complementary metal oxide semiconductor


extended brightness change constraint equation


fast Fourier transform


generalized brightness change constraint equation


multiple hypothesis tracker


particle image velocimetry


point spread function


particle tracking velocimetry


sum-of-squared differences


  1. 25.1.
    M. Unser, A. Aldroubi, M. Eden: Fast B-spline transforms for continuous image representation and interpolation, IEEE Trans. PAMI 13, 277–285 (1991)Google Scholar
  2. 25.2.
    W.T. Freeman, E.H. Adelson: The design and use of steerable filters, IEEE Trans. PAMI 13, 891–906 (1991)Google Scholar
  3. 25.3.
    J. Weickert: Anisotropic Diffusion in Image Processing (Teubner, Stuttgart 1998)zbMATHGoogle Scholar
  4. 25.4.
    P. Perona, J. Malik: Scale-space and edge detection using anisotropic diffusion, IEEE Trans. PAMI 12, 629–639 (1990)Google Scholar
  5. 25.5.
    B. Jähne: Digital Image Processing, 6th edn. (Springer, Heidelberg 2005)Google Scholar
  6. 25.6.
    B. Jähne, H. Scharr, S. Körgel: Principles of filter design. In: Computer Vision and Applications, Signal Processing and Pattern Recognition, Vol. 2, ed. by B. Jähne, H. Haußecker, P. Geißler (Academic, San Diego 1999) pp. 125–151Google Scholar
  7. 25.7.
    J. Bigün, G.H. Granlund: Optimal orientation detection of linear symmetry, ICCVʼ87 (IEEE, Washington 1987) 433–438Google Scholar
  8. 25.8.
    G.H. Granlund: In search of a general picture processing operator, Comput. Graph. Imag. Process. 8, 155–173 (1978)CrossRefGoogle Scholar
  9. 25.9.
    M. Felsberg, G.H. Granlund: POI detection using channel clustering and the 2D energy tensor, Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, LNCS, Vol. 3175 (Springer, Berlin 2004) 103–110Google Scholar
  10. 25.10.
    V.K. Madisetti, D.B. Williams: The Digital Signal Processing Handbook (CRC, Boca Raton 1998)Google Scholar
  11. 25.11.
    B. Jähne: Handbook of Digital Image Processing for Scientific and Technical Applications, 2nd edn. (CRC, Boca Raton 2004)CrossRefGoogle Scholar
  12. 25.12.
    D.J. Fleet: Measurement of Image Velocity (Dissertation University of Toronto, Canada 1990)Google Scholar
  13. 25.13.
    M. Felsberg, G. Sommer: A new extension of linear signal processing for estimating local properties and detecting features. In: Mustererkennung 2000, 22. DAGM Symposium, Kiel, Informatik aktuell, ed. by G. Sommer, N. Krüger, C. Perwass (Springer, Berlin 2000) pp. 195–202Google Scholar
  14. 25.14.
    C.K. Chui (Ed.): Wavelets: A Tutorial in Theory and Applications (Academic, Boston 1992)zbMATHGoogle Scholar
  15. 25.15.
    T. Acharya, P.-S. Tsai: JPEG2000 Standard for Image Compression (Wiley, New York 2005)Google Scholar
  16. 25.16.
    C.E. Willert, M. Gharib: Digital particle image velocimetry, Exp. Fluids 10, 181–193 (1991)CrossRefGoogle Scholar
  17. 25.17.
    J. Westerweel: Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8, 1379–1392 (1997)CrossRefGoogle Scholar
  18. 25.18.
    A.M. Fincham, G.R. Spedding: Low cost, high resolution DPIV for measurement of turbulent fluid flow, Exp. Fluids 23, 449–462 (1997)CrossRefGoogle Scholar
  19. 25.19.
    P.T. Tokumaru, P.E. Dimotakis: Image correlation velocimetry, Exp. Fluids 19, 1–15 (1995)CrossRefGoogle Scholar
  20. 25.20.
    A.W. Gruen: Adaptive least squares correlation: a powerful image matching technique, S. Afr. J. Photogramm. Remote Sensing Cartogr. 14(3), 175–187 (1985)Google Scholar
  21. 25.21.
    F. Scarano, M.L. Riethmuller: Advances in iterative multigrid PIV image processing, Exp. Fluids 29, S51–S60 (2000)CrossRefGoogle Scholar
  22. 25.22.
    E. Cowen, S. Monismith: A hybrid digital particle tracking velocimetry technique, Exp. Fluids 22, 199–211 (1997)CrossRefGoogle Scholar
  23. 25.23.
    R.J.M. Bastiaans, G.A.J. van der Plas, R.N. Kieft: The performance of a new PTV algorithm applied in super-resolution PIV, Exp. Fluids 32, 346–356 (2002)CrossRefGoogle Scholar
  24. 25.24.
    S.J. Baek, S.J. Lee: A new two-frame particle tracking algorithm using match probability, Exp. Fluids 22, 23–32 (1996)CrossRefGoogle Scholar
  25. 25.25.
    K. Ohmi, H.-Y. Li: Particle tracking velocimetry with new algorithms, Meas. Sci. Technol. 11(6), 603–616 (2000)CrossRefGoogle Scholar
  26. 25.26.
    Y.A. Hassan, R.E. Canaan: Full-field bubbly flow velocity measurements using a multiframe particle tracking technique, Exp. Fluids 12, 49–60 (1991)CrossRefGoogle Scholar
  27. 25.27.
    N.A. Malik, T. Dracos, D. Papantoniou: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids 15, 279–294 (1993), Part II: Particle trackingCrossRefGoogle Scholar
  28. 25.28.
    K. Takehara, R.J. Adrian, G.T. Etoh, K.T. Christensen: A Kalman tracker for super-resolution PIV, Exp. Fluids 29, S34–S41 (2000)CrossRefGoogle Scholar
  29. 25.29.
    B. Jähne, H. Haussecker, P. Geissler: Handbook of Computer Vision and Applications (Academic, San Diego 1999)zbMATHGoogle Scholar
  30. 25.30.
    M. Raffel, C. Willert, J. Kompenhans: Particle Image Velocimetry: A Practicle Guide (Springer, Heidelberg 1998)zbMATHGoogle Scholar
  31. 25.31.
    G.R. Spedding, E.J.M. Rignot: Performance analysis and application of grid interpolation techniques for fluid flows, Exp. Fluids 15, 417–430 (1993)CrossRefGoogle Scholar
  32. 25.32.
    A.K. Prasad: Stereoscopic particle images velocimetry, Exp. Fluids 29, 103–116 (2000)CrossRefGoogle Scholar
  33. 25.33.
    R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision (Cambridge University Press, Cambridge 2000)zbMATHGoogle Scholar
  34. 25.34.
    C.S. Slama: Manual of Photogrammetry, 4th edn. (American Society of Photogrammetry, Falls Church 1980)Google Scholar
  35. 25.35.
    K.D. Hinsch: Holographic particle image velocimetry, Meas. Sci. Technol. 13, R61–R72 (2002)CrossRefGoogle Scholar
  36. 25.36.
    T. Dracos: Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques (Kluwer Academic, Dordrecht 1996)Google Scholar
  37. 25.37.
    S.P. McKenna, W.R. McGillis: Performance of digital image velocimetry processing techniques, Exp. Fluids 32, 2 (2002)CrossRefGoogle Scholar
  38. 25.38.
    D.P. Hart: Super-Resolution PIV by Recursive Local-Correlation, J. Visual. 3(2), 187–194 (2000)CrossRefGoogle Scholar
  39. 25.39.
    H.J. Lin, M. Perlin: Improved methods for thin, surface boundary layer investigations, Exp. Fluids 25, 431–444 (1998)CrossRefGoogle Scholar
  40. 25.40.
    H.T. Huang, H.F. Fielder, J.J. Wang: Limitation and improvement of PIV, Exp. Fluids 15, 168–174 (1993), Part I: Limitation of conventional techniques due to deformation of particle image patternsGoogle Scholar
  41. 25.41.
    H.T. Huang, H.F. Fielder, J.J. Wang: Limitation and improvement of PIV, Exp. Fluids 15, 263–273 (1993), Part II. Particle image distortion, a novel techniqueGoogle Scholar
  42. 25.42.
    D.P. Hart: PIV error correction, Exp. Fluids 29, 13–22 (2000)CrossRefGoogle Scholar
  43. 25.43.
    B. Wienecke: Stereo-PIV using self-calibration on particle images, 5th International Symposium on Particle Image Velocimetry (Busan, Korea 2003)Google Scholar
  44. 25.44.
    C.E. Willert, M. Gharib: Three-dimensional particle imaging with a single camera, Exp. Fluids 12, 353–358 (1992)CrossRefGoogle Scholar
  45. 25.45.
    F. Pereirra, M. Gharib, D. Dabiri, M. Modarress: Defocusing PIV: a three component 3-D DPIV measurement technique, Exp. Fluids 29, S78–S84 (2000), Application to bubbly flowsCrossRefGoogle Scholar
  46. 25.46.
    C. Kähler, J. Kompenhans: Fundamentals of multiple plane stereo particle image velocimetry, Exp. Fluids 29, 70–77 (2000)CrossRefGoogle Scholar
  47. 25.47.
    A. Liberzon, R. Gurka, G. Hetsroni: XPIV-Multiplane stereoscopic particle image velocimetry, Exp. Fluids 36, 355–362 (2004)CrossRefGoogle Scholar
  48. 25.48.
    A. Schimpf, S. Kallweit, J.B. Richon: Photogrammatic particle image velocimetry, 5th Int. Symp. on Particle Image Velocimetry (2003)Google Scholar
  49. 25.49.
    R.J. Adrian: Particle-imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  50. 25.50.
    R.D. Keane, R.J. Adrian: Optimization of particle image velocimeters, Meas. Sci. Technol. 1, 1202–1215 (1990), Part I: Double pulsed systemsCrossRefGoogle Scholar
  51. 25.51.
    R.D. Keane, R.J. Adrian: Optimization of particle image velocimeters, Meas. Sci. Technol. 2, 963–974 (1991), Part II: Multiple pulsed systemsCrossRefGoogle Scholar
  52. 25.52.
    R.D. Keane, R.J. Adrian: Theory of crosscorrelation analysis of PIV images, Appl. Sci. Res. 49, 191–215 (1992)CrossRefGoogle Scholar
  53. 25.53.
    J. Westerweel: Digital Particle Image Velocimetry - Theory and Application (Delft Univ. Press, Delft 1993)Google Scholar
  54. 25.54.
    L.C. Gui, W. Merzkirch: A method for tracking ensembles of particle images, Exp. Fluids 21, 465–468 (1996)CrossRefGoogle Scholar
  55. 25.55.
    C.Q. Davis, Z.Z. Karu, D.M. Freeman: Equivalence of subpixel motion estimators based on optical flow and block matching, Int. Symposium on Computer Vision (Coral Gables, Florida 1995)Google Scholar
  56. 25.56.
    L.C. Gui, W. Merzkirch: A comparative study of the MQD method and several correlation-based PIV evaulation algorithms, Exp. Fluids 28, 36–44 (2000)CrossRefGoogle Scholar
  57. 25.57.
    J. Shi, C. Tomasi: Good features to track, Computer Vision Pattern Recognition (1994)Google Scholar
  58. 25.58.
    B.D. Lucas, T. Kanade: An iterative image registration technique with an application to stereo vision, Imaging Understanding Workshop (1981) 121–130Google Scholar
  59. 25.59.
    D. Papantoniou, T. Dracos: Analyzing 3-D turbulent motions in open channel flow by use of stereoscopy and particle tracking, Adv. Turb. 2, 278–285 (1989)Google Scholar
  60. 25.60.
    M.P. Wernet, A. Pline: Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery, Exp. Fluids 15, 295–307 (1993)CrossRefGoogle Scholar
  61. 25.61.
    C.J. Veenman, M.J.T. Reinders, E. Backer: Establishing motion correspondence using extended temporal scope, Artif. Intell. 145(1-2), 227–243 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 25.62.
    B. Jähne: Digital Image Processing, 5th edn. (Springer, Heidelberg 2002)zbMATHGoogle Scholar
  63. 25.63.
    Y.G. Geuzennec, N. Kiritsis: Statistical investigation of errors in particle image velocimetry, Exp. Fluids 10, 138–146 (1990)Google Scholar
  64. 25.64.
    H.G. Maas, A. Gruen, D. Papantoniou: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids 15, 133–146 (1993), Part I: Photogrammetric determination of particle coordinatesCrossRefGoogle Scholar
  65. 25.65.
    Y.G. Guezennec, R.S. Brodkey, N. Trigui, J.C. Kent: Algorithms for fully automated three-dimensional particle tracking velocimetry, Exp. Fluids 17, 209–219 (1994)CrossRefGoogle Scholar
  66. 25.66.
    N.A. Malik, T. Dracos: Interpolation schemes for three-dimensional velocity fields from scattered data using Taylor expansions, J. Comput. Phys. 119, 231–243 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 25.67.
    F. Hering, D. Wierzimok, C. Leue, B. Jähne: Particle tracking velocimetry beneath water waves, Exp. Fluids 23(6), 472–482 (1997), Part I: Visualization and tracking algorithmsCrossRefGoogle Scholar
  68. 25.68.
    G. Nemhauser, L. Wolsey: Integer and Combinatorial Optimization (Wiley, New York 1999)zbMATHGoogle Scholar
  69. 25.69.
    S.B. Dalziel: Decay of rotating turbulence: some particle tracking experiments,. In: Flow Visualization and Image Analysis, ed. by F.T.M. Nieuwstadt (Kluwer Academic, Dordrecht 1993)Google Scholar
  70. 25.70.
    M. Stellmacher, K. Obermayer: A new particle tracking algorithm based on deterministic annealing and alternative distance measures, Exp. Fluids 28, 506–518 (2000)CrossRefGoogle Scholar
  71. 25.71.
    S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu: New algorithms for 2D and 3D point matching: pose estimation and correspondence, Pattern Recog. 31, 1019–1031 (1998)CrossRefGoogle Scholar
  72. 25.72.
    E. Brookner: Tracking and Kalman Filtering made easy (Wiley, New York 1998)CrossRefGoogle Scholar
  73. 25.73.
    S. Blackman, R. Popoli: Design and Analysis of Modern Tracking Systems (Artech House, Boston 1999)zbMATHGoogle Scholar
  74. 25.74.
    I.J. Cox: A review of statistical data association techniques for motion correspondence, Int. J. Comput. Vis. 10(1), 53–66 (1993)CrossRefGoogle Scholar
  75. 25.75.
    L.D. Stone, C.A. Barlow, T.L. Corwin: Bayesian Multiple Target Tracking (Artech House, Boston 1999)Google Scholar
  76. 25.76.
    G. Welch, G. Bishop: An Introduction to the Kalman Filter, Tech. Rep. TR 95-041 (Univ. North Carolina, Chapel Hill 2001)Google Scholar
  77. 25.77.
    I.J. Cox, S.L. Hingorani: An efficient implementation of Reidʼs multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking, IEEE Trans. Pattern Anal. 18(2), 138–150 (1996)CrossRefGoogle Scholar
  78. 25.78.
    R.D. Keane, R.J. Adrian, Y. Zhang: Superresolution particle imaging velocimetry, Meas. Sci. Technol. 6, 754–768 (1995)CrossRefGoogle Scholar
  79. 25.79.
    J. Willneff, B. Lüthi: Particle tracking velocimetry measurements for lagrangian analysis of turbulent flows, 6th Conference on Optical 3-D Measurement Techniques, Vol. 2 (Zurich 2003) 191–198Google Scholar
  80. 25.80.
    E.P. Simoncelli: Distributed representation and analysis of visual motion, Ph.D. Thesis (MIT, Cambridge 1993)zbMATHGoogle Scholar
  81. 25.81.
    O. Faugeras: Three Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, Cambridge 1993)Google Scholar
  82. 25.82.
    B.F. Murray, D.W. Buxton: Experiments in the Machine Interpretation of Visual Motion (MIT Press, Cambridge 1990)Google Scholar
  83. 25.83.
    Z. Zhang, O. Faugeras: 3D Dynamic Scene Analysis, 27 Springer Inform. Sci. (Springer, Heidelberg 1992)Google Scholar
  84. 25.84.
    W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization (Wiley, New York 1998)zbMATHGoogle Scholar
  85. 25.85.
    B.K.P. Horn, B.G. Schunk: Determining optical flow, Artif. Intell. 17, 185–204 (1981)CrossRefGoogle Scholar
  86. 25.86.
    J.L. Barron, D.J. Fleet, S.S. Beauchemin: Performance of optical flow techniques, Int. J. Comput. Vis. 12(1), 43–77 (1994)CrossRefGoogle Scholar
  87. 25.87.
    G.H. Granlund, H. Knutsson: Signal Processing for Computer Vision (Kluwer, Dordrecht 1995)Google Scholar
  88. 25.88.
    R. Wildes, M. Amabile, A.-M. Lanziletto, T.-S. Leu: Recovering estimates of fluid flows from image sequence data, Comput. Vis. Image Underst. 80, 246–266 (2000)CrossRefzbMATHGoogle Scholar
  89. 25.89.
    T. Corpetti, E. Memin, P. Perez: Dense estimation of fluid flows, IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)CrossRefGoogle Scholar
  90. 25.90.
    R. Larsen: Estimation of dense image flow fields in fluids, IEEE T. Geosci. Remote Sens. 36(1), 256–264 (1998)CrossRefGoogle Scholar
  91. 25.91.
    S. van Huffel, J. Vandewalle: The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, Philadelphia 1991)zbMATHGoogle Scholar
  92. 25.92.
    H. Scharr: Optimal Operators in Digital Image Processing, Ph.D. Thesis (University of Heidelberg, Heidelberg 2000)Google Scholar
  93. 25.93.
    W.H. Press, S.A. Teukolsky, W. Vetterling, B. Flannery: Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, New York 1992)Google Scholar
  94. 25.94.
    P. Ruhnau, T. Kohlberger, C. Schnörr, H. Nobach: Variational optical flow estimation for particle image velocimetry, Exp. Fluids 38, 21–32 (2005)CrossRefGoogle Scholar
  95. 25.95.
    I. Cohen, I. Herlin: Non uniform multiresolution method for optical flow and phase portrait models: environmental applications, Int. Comput. Vis. 33(1), 24–49 (1999)Google Scholar
  96. 25.96.
    S. Geman, D.E. McClure: Bayesian image analysis: An application to single photon emission tomography, Am. Statist. Assoc. Statist. Comput. Sect. (1984) 12–18Google Scholar
  97. 25.97.
    M.J. Black, P. Anandan: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields, Comput. Vis. Image Understand. 63, 75–104 (1996)CrossRefGoogle Scholar
  98. 25.98.
    H.W. Haussecker, D.J. Fleet: Computing optical flow with physical models of brightness variation, IEEE Trans. Pattern Anal. 23(6), 661–673 (2001)CrossRefGoogle Scholar
  99. 25.99.
    P. Ruhnau, C. Schnörr: Optical Stokes flow: an image based control approach, Exp. Fluids 42, 61–78 (2007)CrossRefGoogle Scholar
  100. 25.100.
    P. Ruhnau, A. Stahl, C. Schnörr: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal reqularization, 26th DAGM (2006) , Pattern RecognitionGoogle Scholar
  101. 25.101.
    T. Corpetti, D. Heitz, G. Arroyo, E. Memin, A. Santa-Cruz: Fluid experimental flow estimation based on an optical-flow scheme, Exp. Fluids 40(1), 80–97 (2005)CrossRefGoogle Scholar
  102. 25.102.
    C. Garbe, H. Spies, B. Jähne: Estimation of surface flow and net heat flux from infrared image sequences, J. Math. Imag. Vis. 19, 159–174 (2003)CrossRefzbMATHGoogle Scholar
  103. 25.103.
    M. Jehle, B. Jähne: Direct estimation of the wall shear rate using parametric motion models in 3D, Lect. Notes Comput. Sci. 174, 434–443 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Research Group Image Processing, Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  2. 2.Research Group Image Processing, Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  3. 3.Research Group Image Processing, Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations