Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films

Abstract

Adhesion between solids is a ubiquitous phenomenon whose importance is magnified at the micrometer and nanometer scales, where the surface-to-volume ratio diverges as we approach the size of a single atom.

Numerous techniques for measuring adhesion at the atomic scale have been developed, but significant limitations exist. Instrumental improvements and reliable quantification are still needed. Recent studies have highlighted the unique and important effect of liquid capillaries, particularly water, at the nanometer scale. The results demonstrate that macroscopic considerations of classic meniscus theory must be modified to take into account new scaling and geometric relationships unique to the nanometer scale. More generally, a molecular scale description of wetting and capillary condensation as it applies to nanoscale interfaces is clearly desirable, but remains an important challenge.

The measurement of adhesion between self-assembled monolayers has proven to be a reliable way to probe the influence of surface chemistry and local environment on adhesion. To date, however, few of these systems have been investigated in detail quantitatively. The molecular origins of adhesion down to the single-bond level still need to be fully investigated. The most recent studies illustrate that, while new information about adhesion in these systems has been revealed, further enhancements of current techniques as well as the development of new methodologies coupled with accurate theoretical modeling are required to adequately tackle these complex measurements.

Abbreviations

AFM

atomic force microscopy

JKR

Johnson–Kendall–Roberts

MEMS

microelectromechanical system

NEMS

nanoelectromechanical system

OTS

octadecyltrichlorosilane

RH

relative humidity

SAM

scanning acoustic microscopy

SAM

self-assembled monolayer

SFA

surface force apparatus

SFM

scanning force microscopy

UHV

ultrahigh vacuum

References

  1. 32.1.
    J. N. Israelachvili: Intermolecular and Surface Forces (Academic Press, London 1992)Google Scholar
  2. 32.2.
    K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, C. Wai Pang, T. W. Kenny, R. Fearing, R. J. Full: Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)Google Scholar
  3. 32.3.
    A. L. Baldwin, G. Thurston: Mechanics of endothelial cell architecture and vascular permeability, Crit. Rev. Biomed. Eng. 29, 247–278 (2001)Google Scholar
  4. 32.4.
    S. R. White, N. R. Sottos, P. H. Guebelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001)Google Scholar
  5. 32.5.
    R. W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97, 1163–1194 (1997)Google Scholar
  6. 32.6.
    M. P. De boer, T. A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86, 817–827 (1999)Google Scholar
  7. 32.7.
    M. P. De boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian: Adhesion hysteresis of silane-coated microcantilevers, Acta Mater. 48, 4531–4541 (2000)Google Scholar
  8. 32.8.
    R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vacuum Sci. Technol. 15, 1–20 (1997)Google Scholar
  9. 32.9.
    R. Maboudian, W. R. Ashurst, C. Carraro: Tribological challenges in micromechanical systems, Tribol. Lett. 12, 95–100 (2002)Google Scholar
  10. 32.10.
    R. Maboudian: Adhesion and friction issues associated with reliable operation of MEMS, MRS Bull. 23, 47–51 (1998)Google Scholar
  11. 32.11.
    J. N. Israelachvili: Thin film studies using multiple-beam interferometry, J. Colloid Interf. Sci. 44, 259–272 (1973)Google Scholar
  12. 32.12.
    J. N. Israelachvili, D. Tabor: The measurement of van der Waals dispersion forces in the range of 1.5 to 130 nm, Proc. R. Soc. Lond. A 331, 19–38 (1972)Google Scholar
  13. 32.13.
    G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)Google Scholar
  14. 32.14.
    J. N. Israelachvili, P. M. Mcguiggan, A. M. Homola: Dynamic properties of molecularly thin liquid films, Science 240, 189–191 (1988)Google Scholar
  15. 32.15.
    J. Peachey, J. Van Alsten, S. Granick: Design of an apparatus to measure the shear response of ultrathin liquid, Rev. Sci. Instrum. 62, 463–473 (1991)Google Scholar
  16. 32.16.
    P. Frantz, N. Agraït, M. Salmeron: Use of capacitance to measure surface forces. 1. Measuring distance of separation with enhanced spatial and time resolution, Langmuir 12, 3289–3294 (1996)Google Scholar
  17. 32.17.
    L. R. Fisher, J. N. Israelachvili: Direct measurement of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces, Colloids and Surfaces 3, 303–319 (1981)Google Scholar
  18. 32.18.
    L. R. Fisher, J. N. Israelachvili: Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci, J. Colloid Interf. Sci. 80, 528–541 (1981)Google Scholar
  19. 32.19.
    J. N. Israelachvili: Adhesion, friction and lubrication of molecularly smooth surfaces. In: Fundamentals of Friction, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) pp. 351–385Google Scholar
  20. 32.20.
    G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, S. Granick: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101, 2606–2615 (1994)Google Scholar
  21. 32.21.
    S. Granick: Molecular tribology of fluids. In: Fundamentals of Friction, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) p. 387Google Scholar
  22. 32.22.
    K. L. Johnson: Contact Mechanics (University Press, Cambridge 1987)Google Scholar
  23. 32.23.
    M. A. Lantz, S. J. O'shea, M. E. Welland: Simultaneous force and conduction measurements in atomic force microscopy, Phys. Rev. B 56, 15345–15352 (1997)Google Scholar
  24. 32.24.
    M. Enachescu, R. J. A. Van Den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, M. Salmeron: An AFM study of an ideally hard contact: The diamond(111)/tungsten-carbide interface, Phys. Rev. Lett. 81, 1877–1880 (1998)Google Scholar
  25. 32.25.
    M. A. Lantz, S. J. O'shea, A. C. F. Hoole, M. E. Welland: Lateral stiffness of the tip and tip–sample contact in frictional force microscopy, Appl. Phys. Lett. 70, 970–972 (1997)Google Scholar
  26. 32.26.
    R. W. Carpick, D. F. Ogletree, M. Salmeron: Lateral stiffness: A new nanomechanical measurement with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550 (1997)Google Scholar
  27. 32.27.
    O. Marti, B. Drake, P. K. Hansma: Atomic force microscopy of liquid-covered surfaces: atomic resolution images, Appl. Phys. Lett. 51, 484–486 (1987)Google Scholar
  28. 32.28.
    G. J. Germann, S. R. Cohen, G. Neubauer, G. M. Mcclelland, H. Seki, D. Coulman: Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces, J. Appl. Phys. 73, 163–167 (1993)Google Scholar
  29. 32.29.
    L. Howald, E. Meyer, R. Lüthi, H. Haefke, R. Overney, H. Rudin, H.-J. Güntherodt: Multifunctional probe microscope for facile operation in ultrahigh vacuum, Appl. Phys. Lett. 63, 117–119 (1993)Google Scholar
  30. 32.30.
    M. Kageshima, H. Yamada, K. Nakayama, H. Sakama, A. Kawau, T. Fujii, M. Suzuki: Development of an ultrahigh vacuum atomic force microscope for investigations of semiconductor surfaces, J. Vacuum Sci. Technol. B 11, 1987–1991 (1993)Google Scholar
  31. 32.31.
    J. A. Greenwood: Adhesion of elastic spheres, Proc. R. Soc. Lond. A 453, 1277–1297 (1997)Google Scholar
  32. 32.32.
    S. P. Jarvis, A. Oral, T. P. Weihs, J. B. Pethica: A novel force microscope and point contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)Google Scholar
  33. 32.33.
    S. P. Jarvis, H. Yamada, S.-I. Yamamoto, H. Tokumoto: A new force controlled atomic force microscope for use in ultrahigh vacuum, Rev. Sci. Instrum. 67, 2281–2285 (1996)Google Scholar
  34. 32.34.
    S. A. Joyce, J. E. Houston: A new force sensor incorporating force-feedback control for interfacial force microscopy, Rev. Sci. Instrum. 62, 710–715 (1991)Google Scholar
  35. 32.35.
    S. A. Joyce, J. E. Houston, T. A. Michalske: Differentiation of topographical and chemical structures using an interfacial force microscope, Appl. Phys. Lett. 60, 1175 (1992)Google Scholar
  36. 32.36.
    P. D. Ashby, L. W. Chen, C. M. Lieber: Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy, J. Am. Chem. Soc. 122, 9467–9472 (2000)Google Scholar
  37. 32.37.
    H. I. Kim, V. Boiadjiev, J. E. Houston, X. Y. Zhu, J. D. Kiely: Tribological properties of self-assembled monolayers on Au, SiOx, Si surfaces, Tribol. Lett. 10, 97–101 (2001)Google Scholar
  38. 32.38.
    P. A. Taylor, J. S. Nelson, B. W. Dodson: Adhesion between atomically flat metallic surfaces, Phys. Rev. B 44, 5834–5841 (1991)Google Scholar
  39. 32.39.
    J. S. Nelson, B. W. Dodson, P. A. Taylor: Adhesive avalanche in covalently bonded materials, Phys. Rev. B 45, 4439–4444 (1992)Google Scholar
  40. 32.40.
    R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197–301 (2002)Google Scholar
  41. 32.41.
    F. J. Giessibl: Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Phys. Rev. B 56, 16010–15 (1997)Google Scholar
  42. 32.42.
    P. M. Hoffmann, A. Oral, R. A. Grimble, H. O. Ozer, S. Jeffery, J. B. Pethica: Direct measurement of interatomic force gradients using an ultra-low-amplitude atomic force microscope, Proc. R. Soc. Lond. A 457, 1161–1174 (2001)Google Scholar
  43. 32.43.
    K. R. Shull: Contact mechanics and the adhesion of soft solids, Mater. Sci. Eng. R R36, 1–45 (2002)Google Scholar
  44. 32.44.
    L. Xu, A. Lio, J. Hu, D. F. Ogletree, M. Salmeron: Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 102, 540–548 (1998)Google Scholar
  45. 32.45.
    S. P. Timoshenko, J. N. Goodier: Theory of Elasticity (McGraw-Hill, New York 1987)Google Scholar
  46. 32.46.
    J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)Google Scholar
  47. 32.47.
    J. E. Sader, I. Larson, P. Mulvaney, L. R. White: Method for the calibration of atomic force microscope cantilevers, Rev. Sci. Instrum. 66, 3789–3798 (1995)Google Scholar
  48. 32.48.
    M. Tortonese, M. Kirk: Characterization of application specific probes for SPMs, Proc. SPIE 3009, 53–60 (1997)Google Scholar
  49. 32.49.
    T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vacuum Sci. Technol. A 8, 3386–96 (1990)Google Scholar
  50. 32.50.
    H.-J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamberg, A. L. Weisenhorn, K. Goldie, A. Engel: Scan speed limit in atomic force microscopy, J. Microsc. 169, 75–84 (1993)Google Scholar
  51. 32.51.
    J. M. Neumeister, W. A. Ducker: Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers, Rev. Sci. Instrum. 65, 2527–2531 (1994)Google Scholar
  52. 32.52.
    J. E. Sader: Parallel beam approximation for V-shaped atomic force microscope cantilevers, Rev. Sci. Instrum. 66, 4583–4587 (1995)Google Scholar
  53. 32.53.
    D. F. Ogletree, R. W. Carpick, M. Salmeron: Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67, 3298–3306 (1996)Google Scholar
  54. 32.54.
    R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, M. Guggisberg, M. Bammerlin, H.-J. Güntherodt: Nanotribology: An UHV-SFM study on thin films of C60 and AgBr, Surf. Sci. 338, 247–260 (1995)Google Scholar
  55. 32.55.
    U. D. Schwarz, P. Koster, R. Wiesendanger: Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum. 67, 2560–2567 (1996)Google Scholar
  56. 32.56.
    T. J. Senden, W. A. Ducker: Experimental determination of spring constants in atomic force microscopy, Langmuir 10, 1003–1004 (1994)Google Scholar
  57. 32.57.
    A. Torii, M. Sasaki, K. Hane, S. Okuma: A method for determining the spring constant of cantilevers for atomic force microscopy, Meas. Sci. Technol. 7, 179–184 (1996)Google Scholar
  58. 32.58.
    J. A. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I - general principles and new measurement techniques, Trans. ASME J. Tribol. 116, 378–388 (1994)Google Scholar
  59. 32.59.
    Y. Q. Li, N. J. Tao, J. Pan, A. A. Garcia, S. M. Lindsay: Direct measurement of interaction forces between colloidal particles using the scanning force microscope, Langmuir 9, 637–641 (1993)Google Scholar
  60. 32.60.
    J. E. Sader, J. W. M. Chon, P. Mulvaney: Calibration of rectangular atomic force microscope cantilevers, Rev. Sci. Instrum. 70, 3967–3969 (1999)Google Scholar
  61. 32.61.
    J. S. Villarrubia: Morphological estimation of tip geometry for scanned probe microscopy, Surf. Sci. 321, 287–300 (1994)Google Scholar
  62. 32.62.
    J. S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation, J. Res. Natl. Inst. Stand. Technol. (USA) 102, 425–454 (1997)Google Scholar
  63. 32.63.
    L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. T. Postek, J. F. Song: Experimental test of blind tip reconstruction for scanning probe microscopy, Ultramicroscopy 85, 141–153 (2000)Google Scholar
  64. 32.64.
    R. W. Carpick, N. Agraït, D. F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vacuum Sci. Technol. B 14, 1289–1295 (1996)Google Scholar
  65. 32.65.
    K. F. Jarausch, T. J. Stark, P. E. Russell: Silicon structures for in situ characterization of atomic force microscope probe geometry, J. Vacuum Sci. Technol. B 14, 3425–3430 (1996)Google Scholar
  66. 32.66.
    F. Atamny, A. Baiker: Direct imaging of the tip shape by AFM, Surf. Sci. 323, L314–L318 (1995)Google Scholar
  67. 32.67.
    S. S. Sheiko, M. Moller, E. M. C. M. Reuvekamp, H. W. Zandbergen: Evaluation of the probing profile of scanning force microscopy tips, Ultramicroscopy 53, 371–380 (1994)Google Scholar
  68. 32.68.
    C. Odin, J. P. Aimé, Z. El Kaakour, T. Bouhacina: Tip's finite size effects on atomic force microscopy in the contact mode: Simple geometrical considerations for rapid estimation of apex radius, tip angle based on the study of polystyrene latex balls, Surf. Sci. 317, 321–340 (1994)Google Scholar
  69. 32.69.
    K. L. Westra, D. J. Thomson: Atomic force microscope tip radius needed for accurate imaging of thin film surfaces, J. Vacuum Sci. Technol. B 12, 3176–3181 (1994)Google Scholar
  70. 32.70.
    P. Markiewicz, M. C. Goh: Atomic force microscope tip deconvolution using calibration arrays, Rev. Sci. Instrum. 66, 3186–3190 (1995)Google Scholar
  71. 32.71.
    R. Dixson, J. Schneir, T. Mcwaid, N. Sullivan, V. W. Tsai, S. H. Zaidi, S. R. J. Brueck: Toward accurate linewidth metrology using atomic force microscopy and tip characterization, Proc. SPIE 2725, 589–607 (1996)Google Scholar
  72. 32.72.
    P. Siedle, H.-J. Butt, E. Bamberg, D. N. Wang, W. Kuhlbrandt, J. Zach, M. Haider: Determining the form of atomic force microscope tips. In: X-Ray Optics and Microanalysis 1992, Proceedings of the Thirteenth International Congress, Manchester, UK, ed. by P. B. Kenway, P. J. Duke, G. W. Lorimer, T. Mulvey, J. W. Drummond, G. Love, A. G. Michette, M. Stedman (IOP, Bristol 1992)Google Scholar
  73. 32.73.
    S. Xu, M. F. Arnsdorf: Calibration of the scanning (atomic) force microscope with gold particles, J. Microsc. 3, 199–210 (1994)Google Scholar
  74. 32.74.
    U. D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Friction force spectroscopy in the low-load regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997)Google Scholar
  75. 32.75.
    S. J. O'shea, R. N. Atta, M. E. Welland: Characterization of tips for conducting atomic force microscopy, Rev. Sci. Instrum. 66, 2508–2512 (1995)Google Scholar
  76. 32.76.
    P. Niedermann, W. Hanni, N. Blanc, R. Christoph, J. Burger: Chemical vapor deposition diamond for tips in nanoprobe experiments, J. Vacuum Sci. Technol. A 14, 1233–1236 (1995)Google Scholar
  77. 32.77.
    L. M. Qian, X. D. Xiao, S. Z. Wen: Tip in situ chemical modification and its effects on tribological measurements, Langmuir 16, 662–670 (2000)Google Scholar
  78. 32.78.
    E. L. Florin, V. T. Moy, H. E. Gaub: Adhesion forces between individual ligand–receptor pairs, Science 264, 415–417 (1994)Google Scholar
  79. 32.79.
    V. T. Moy, E. L. Florin, H. E. Gaub: Intermolecular forces and energies between ligands and receptors, Science 266, 257–259 (1994)Google Scholar
  80. 32.80.
    G. U. Lee, L. A. Chrisey, R. J. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266, 771–773 (1994)Google Scholar
  81. 32.81.
    S. S. Wong, E. Joselevich, A. T. Woolley, C. Chin Li, C. M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55 (1998)Google Scholar
  82. 32.82.
    O. H. Willemsen, M. M. E. Snel, K. O. Van Der Werf, B. G. De Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. Van Kooyk, C. G. Figdor: Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy, Biophys. J. 75, 2220–2228 (1998)Google Scholar
  83. 32.83.
    W. A. Ducker, T. J. Senden, R. M. Pashley: Direct measurement of colloidal forces using an atomic force microscope, Nature 353, 239–241 (1991)Google Scholar
  84. 32.84.
    H. J. Butt: Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope, Biophys. J. 60, 1438–1444 (1991)Google Scholar
  85. 32.85.
    V. S. J. Craig, C. Neto: In situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall, Langmuir 17, 6018–6022 (2001)Google Scholar
  86. 32.86.
    R. J. Cannara, M. J. Brukman, R. W. Carpick: Cantilever tilt compensation for variable-load atomic force microscopy, Rev. Sci. Instrum. 76, 53706 (2005)Google Scholar
  87. 32.87.
    R. Staub, D. Alliata, C. Nicolini: Drift elimination in the calibration of scanning probe microscopes, Rev. Sci. Instrum. 66, 2513–2516 (1995)Google Scholar
  88. 32.88.
    S. M. Hues, C. F. Draper, K. P. Lee, R. J. Colton: Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy, Rev. Sci. Instrum. 65, 1561–1565 (1994)Google Scholar
  89. 32.89.
    J. Fu: In situ testing and calibrating of z-piezo of an atomic force microscope, Rev. Sci. Instrum. 66, 3785–3788 (1995)Google Scholar
  90. 32.90.
    J. Garnaes, L. Nielsen, K. Dirscherl, J. F. Jorgensen, J. B. Rasmussen, P. E. Lindelof, C. B. Sorensen: Two-dimensional nanometer-scale calibration based on one-dimensional gratings, Appl. Phys. A 66, 831–5 (1998)Google Scholar
  91. 32.91.
    J. F. Jorgensen, K. Carneiro, L. L. Madsen, K. Conradsen: Hysteresis correction of scanning tunneling microscope images, J. Vacuum Sci. Technol. B 1, 1702–1704 (1994)Google Scholar
  92. 32.92.
    J. F. Jorgensen, L. L. Madsen, J. Garnaes, K. Carneiro, K. Schaumburg: Calibration, drift elimination, and molecular structure analysis, J. Vacuum Sci. Technol. B 12, 1698–1701 (1994)Google Scholar
  93. 32.93.
    M. Jaschke, H. J. Butt: Height calibration of optical lever atomic force microscopes by simple laser interferometry, Rev. Sci. Instrum. 66, 1258–1259 (1995)Google Scholar
  94. 32.94.
    L. A. Nagahara, K. Hashimoto, A. Fujishima, D. Snowden-Ifft, P. B. Price: Mica etch pits as a height calibration source for atomic force microscopy, J. Vacuum Sci. Technol. B 12, 1694–7 (1993)Google Scholar
  95. 32.95.
    H. M. Brodowsky, U.-C. Boehnke, F. Kremer: Wide range standard for scanning probe microscopy height calibration, Rev. Sci. Instrum. 67, 4198–4200 (1996)Google Scholar
  96. 32.96.
    R. M. Overney, H. Takano, M. Fujihira: Elastic compliances measured by atomic force microscopy, Europhys. Lett. 26, 443–447 (1994)Google Scholar
  97. 32.97.
    M. S. Marcus, R. W. Carpick, D. Y. Sasaki, M. A. Eriksson: Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy, Phys. Rev. Lett. 88, 226103 (2002)Google Scholar
  98. 32.98.
    M. J. D'amato, M. S. Marcus, M. A. Eriksson, R. W. Carpick: Phase imaging and the lever-sample tilt angle in dynamic atomic force microscopy, Appl. Phys. Lett. 85, 4378–4380 (2004)Google Scholar
  99. 32.99.
    L.-O. Heim, M. Kappl, H.-J. Butt: Tilt of atomic force microscope cantilevers: Effect on spring constant and adhesion measurements, Langmuir 20, 2760–2764 (2004)Google Scholar
  100. 32.100.
    J. L. Hutter: Comment on tilt of atomic force microscope cantilevers: Effect on spring constant and adhesion measurements, Langmuir 21, 2630–2632 (2005)Google Scholar
  101. 32.101.
    P. G. De Gennes: Wetting: statistics and dynamics, Rev. Mod. Phys. 57, 827–863 (1985)Google Scholar
  102. 32.102.
    T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B 62, 13667–13673 (2000)Google Scholar
  103. 32.103.
    Y. Sugawara, M. Ohta, T. Konishi, S. Morita, M. Suzuki, Y. Enomoto: Effects of humidity and tip radius on the adhesive force measured with atomic force microscopy, Wear 168, 13–16 (1993)Google Scholar
  104. 32.104.
    M. Binggeli, C. M. Mate: Influence of capillary condensation of water on nanotribology studied by force microscopy, Appl. Phys. Lett. 65, 415–417 (1994)Google Scholar
  105. 32.105.
    X. Xiao, Q. Linmao: Investigation of humidity-dependent capillary force, Langmuir 16, 8153–8158 (2000)Google Scholar
  106. 32.106.
    F. M. Orr, L. E. Scriven, A. P. Rivas: Pendular rings between solids: meniscus properties and capillary force, J. Fluid Mech. 67, 723–742 (1975)Google Scholar
  107. 32.107.
    H. K. Christenson: Adhesion between surfaces in undersaturated vapors – a re-examination of the influence of meniscus curvature and surface forces, J. Colloid Interf. Sci. 121, 170–178 (1988)Google Scholar
  108. 32.108.
    E. Riedo, F. Levy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505/1–4 (2002)Google Scholar
  109. 32.109.
    D. Maugis, B. Gauthiermanuel: JKR–DMT transition in the presence of a liquid meniscus, J. Adhes. Sci. Technol. 8, 1311–1322 (1994)Google Scholar
  110. 32.110.
    A. Fogden, L. R. White: Contact elasticity in the presence of capillary condensation. 1. The nonadhesive Hertz problem, J. Colloid Interf. Sci. 138, 414–430 (1990)Google Scholar
  111. 32.111.
    K. L. Johnson, K. Kendall, A. D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A 324, 301–313 (1971)Google Scholar
  112. 32.112.
    K. L. Johnson: Adhesion and friction between a smooth elastic asperity and a plane surface, Proc. R. Soc. Lond. A 453, 163–179 (1997)Google Scholar
  113. 32.113.
    K. Johnson, J. Greenwood: An adhesion map for the contact of elastic spheres, J. Colloid Interf. Sci. 192, 326–333 (1997)Google Scholar
  114. 32.114.
    T. Thundat, X. Y. Zheng, G. Y. Chen, R. J. Warmack: Role of relative humidity in atomic force microscopy imaging, Surf. Sci. 294, L939–L943 (1993)Google Scholar
  115. 32.115.
    M. Binggeli, R. Christoph, H.-E. Hintermann: Observation of controlled, electrochemically induced friction force modulations in the nano-Newton range, Tribol. Lett. 1, 13–21 (1995)Google Scholar
  116. 32.116.
    B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)Google Scholar
  117. 32.117.
    W. Gulbinski, D. Pailharey, T. Suszko, Y. Mathey: Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films, Surf. Sci. 475, 149–158 (2001)Google Scholar
  118. 32.118.
    M. He, A. S. Blum, D. E. Aston, C. Buenviaje, R. M. Overney, R. Luginbuhl: Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys. 114, 1355–1360 (2001)Google Scholar
  119. 32.119.
    A. W. Adamson: Physical Chemistry of Surfaces, 5th edn. (Wiley, 1990) Chap. 16, pp. 591–615Google Scholar
  120. 32.120.
    C. M. Mate: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording, J. Appl. Phys. 72(2), 3084–3090 (1992)Google Scholar
  121. 32.121.
    C. Gao: Theory of menisci and its applications, Appl. Phys. Lett. 71(13), 1801–1803 (1997)Google Scholar
  122. 32.122.
    G. Lian, C. Thornton, M. J. Adams: A theoretical study of the liquid bridge forces between two rigid spherical bodies, J. Colloid Interf. Sci. 161, 138–147 (1993)Google Scholar
  123. 32.123.
    C. D. Willett, M. J. Adams, S. A. Johnson, J. P. K. Seville: Capillary bridges between two spherical bodies, Langmuir 16, 9396–9405 (2000)Google Scholar
  124. 32.124.
    J. A. Greenwood, J. B. P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300–319 (1966)Google Scholar
  125. 32.125.
    R. Maboudian: Surface processes in MEMS technology, Surf. Sci. Rep. 30, 207–270 (1998)Google Scholar
  126. 32.126.
    R. Maboudian, W. R. Ashurst, C. Carraro: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sensors Actuat. A 82, 219–223 (2000)Google Scholar
  127. 32.127.
    R. Maboudian, W. R. Ashurst, C. Carraro: Tribological challenges in micromechanical systems, Tribol. Lett. 12, 95–100 (2002)Google Scholar
  128. 32.128.
    K. Komvopoulous: Surface engineering and microtribology for microelectromechanical systems, Wear 200, 305–327 (1996)Google Scholar
  129. 32.129.
    A. Noy, D. V. Vezenov, C. M. Lieber: Chemical force microscopy, Annu. Rev. Mater. Sci 27, 381–421 (1997)Google Scholar
  130. 32.130.
    H. Takano, J. R. Kenseth, S.-S. Wong, J. C. O'brien, M. D. Porter: Chemical and biochemical analysis using scanning force microscopy, Chem. Rev. 99, 2845–2890 (1999)Google Scholar
  131. 32.131.
    D. L. Sedin, K. L. Rowlen: Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72, 2183–2189 (2000)Google Scholar
  132. 32.132.
    T. Han, J. M. Williams, T. P. Beebe: Chemical bonds studied with functionalized atomic force microscopy tips, Anal. Chim. Acta 307, 365–376 (1995)Google Scholar
  133. 32.133.
    L. A. Wenzler, G. L. Moyes, L. G. Olson, J. M. Harris, T. P. Beebe: Single-molecule bond rupture force analysis of interactions between AFM tips and substrates modified with organosilanes, Anal. Chem. 69, 2855–2861 (1997)Google Scholar
  134. 32.134.
    L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen, J. M. Harris, T. P. B.. Jr: Measurements of single-molecule bond rupture forces between self-assembled monolayers of organosilanes with the atomic force microscope, Langmuir 13, 3761–3768 (1997)Google Scholar
  135. 32.135.
    C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, C. M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)Google Scholar
  136. 32.136.
    A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, C. M. Lieber: Chemical force microscopy: Exploiting chemically-modified tips to quantify adhesion, friction and functional group distributions in molecular assemblies, J. Am. Chem. Soc. 117, 7943–7951 (1995)Google Scholar
  137. 32.137.
    D. V. Vezenov, A. Noy, L. F. Rozsnyai, C. M. Lieber: Force titrations, ionization state sensitive imaging of functional group distributions in molecular assemblies, J. Am. Chem. Soc. 119, 2006–2015 (1997)Google Scholar
  138. 32.138.
    S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, C. M. Lieber: Covalently-functionalized single-walled carbon nanotube tips for chemical force microscopy, J. Am. Chem. Soc. 120, 8557–8558 (1998)Google Scholar
  139. 32.139.
    D. V. Vezenov, A. V. Zhuk, G. M. Whitesides, C. M. Likeber: Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers and polar solvents, J. Am. Chem. Soc. 124, 10578–10588 (2002)Google Scholar
  140. 32.140.
    J. E. Houston, H. I. Kim: Adhesion, friction, and mechanical properties of functionalized alkanethiol self-assembled monolayers, Acc. Chem. Res. 35, 547–553 (2002)Google Scholar
  141. 32.141.
    T. Ito, M. Namba, P. Buhlmann, Y. Umezawa: Modification of silicon nitride tips with trichlorosilane self-assembled monolayers (SAMs) for chemical force microscopy, Langmuir 13, 4323–4332 (1997)Google Scholar
  142. 32.142.
    H. I. Kim, M. Graupe, O. Oloba, T. Koini, S. Imaduddin, T. R. Lee, S. S. Perry: Molecularly specific studies of the frictional properties of monolayer films: A systematic comparison of CF3-, (CH3) (32.2) CH-, CH3-terminated films, Langmuir 15, 3179–3185 (1999)Google Scholar
  143. 32.143.
    H. I. Kim, J. E. Houston: Separating mechanical and chemical contributions to molecular-level friction, J. Am. Chem. Soc. 122, 12045–12046 (2000)Google Scholar
  144. 32.144.
    S. Lee, Y. S. Shon, R. Colorado, R. L. Guenard, T. R. Lee, S. S. Perry: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMs derived from normal and spiroalkanedithiols, Langmuir 16, 2220–2224 (2000)Google Scholar
  145. 32.145.
    Y. Leng, S. Jiang: Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124, 11764–11770 (2002)Google Scholar
  146. 32.146.
    T. Nakagawa, K. Ogawa, T. Kurumizawa: Discriminating molecular length of chemically adsorbed molecules using an atomic force microscope having a tip covered with sensor molecules (an atomic force microscope having chemical sensing function), Jpn. J. Appl. Phys. 32, 294–296 (1993)Google Scholar
  147. 32.147.
    T. Nakagawa, K. Ogawa, T. Kurumizawa: Atomic force microscope for chemical sensing, J. Vacuum Sci. Tech. B 12, 2215–2218 (1994)Google Scholar
  148. 32.148.
    S. K. Sinniah, A. B. Steel, C. J. Miller, J. E. Reutt-Robey: Solvent exclusion and chemical contrast in scanning force microscopy, J. Am. Chem. Soc. 118, 8925–8931 (1996)Google Scholar
  149. 32.149.
    H. Skulason, C. D. Frisbie: Detection of discrete interactiuons upon rupture of Au microcontacts to self-assembled monolayers terminated with -S(CO)CH3 or -SH, J. Am. Chem. Soc. 122, 9750–9760 (2000)Google Scholar
  150. 32.150.
    E. W. V. D. Vegte, G. Hadziioannou: Scanning force microscopy with chemical specificity: An extensive study of chemically specific tip–surface interactions and the chemical imaging of surface functional groups, Langmuir 13, 4357–4368 (1997)Google Scholar
  151. 32.151.
    V. Tsukruk, V. N. Bliznyuk: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces, Langmuir 14, 446–455 (1998)Google Scholar
  152. 32.152.
    E. W. V. D. Vegte, G. Hadziioannou: Acid-base properties and the chemical imaging of surface-bound functional groups with scanning force microscopy, J. Phys. Chem. B 101, 9563–9569 (1997)Google Scholar
  153. 32.153.
    J. Zhang, J. Kirkham, C. Robinson, M. L. Wallwork, D. A. Smith, A. Marsh, M. Wong: Determination of the ionization state of 11-thioundecyl-1-phosphonic acid in self-assembled monolayers by chemical force microscopy, Anal. Chem. 72, 1973–1978 (2000)Google Scholar
  154. 32.154.
    B. Xu, X. Xiao, N. J. Tao: Measurements of single-molecule electromechanical properties, J. Am. Chem. Soc. 125, 16164–16165 (2003)Google Scholar
  155. 32.155.
    A. Lio, C. Morant, D. F. Ogletree, M. Salmeron: Atomic force microscopy study of the pressure-dependent structural and frictional properties of n-alkanethiols on gold, J. Phys. Chem. B 101, 4767–4773 (1997)Google Scholar
  156. 32.156.
    S.-S. Wong, H. Takano, M. D. Porter: Mapping orientation differences of terminal functional groups by friction force microscopy, Anal. Chem. 70, 5209–5212 (1998)Google Scholar
  157. 32.157.
    A. Lio, D. H. Charych, M. Salmeron: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkysilanes on mica, J. Phys. Chem. B 101, 3800–3805 (1997)Google Scholar
  158. 32.158.
    X. Xiao, J. Hu, D. H. Charych, M. Salmeron: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy, Langmuir 12, 235–237 (1996)Google Scholar
  159. 32.159.
    G.-Y. Liu, M. Salmeron: Reversible displacement of chemisorbed n-alkane thiol molecules on Au(111) surface: An atomic force microscopy study, Langmuir 10, 367–370 (1994)Google Scholar
  160. 32.160.
    A. B. Tutein, S. J. Stuart, J. A. Harrison: Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond, J. Phys. Chem. B 103, 11357–11365 (1999)Google Scholar
  161. 32.161.
    R. L. Pizzolatto, Y. J. Yang, L. K. Wolf, M. C. Messmer: Conformational aspects of modal chromatographic surfaces studied by sum-frequency generation, Anal. Chem. Acta 397, 81–92 (1999)Google Scholar
  162. 32.162.
    E. W. V. D. Vegte, A. Subbotin, G. Hadziioannou: Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on gold: Effect of chain length on adhesion, friction and imaging, Langmuir 16, 3249–3256 (2000)Google Scholar
  163. 32.163.
    Y.-S. Lo, J. Simons, T. P. B. Jr: Temperature dependence of the biotin–avidin bond rupture force studied by atomic force microscopy, J. Phys. Chem. B 106, 9847–9857 (2002)Google Scholar
  164. 32.164.
    Y.-S. Lo, N. D. Huefner, W. S. Chan, F. Stevebs, J. M. Harris, J. T. P. Beebe: Specific interactions between biotin and avidin studies by atomic force microscopy using the Poisson statistical analysis method, Langmuir 15, 1373–1382 (1999)Google Scholar
  165. 32.165.
    J. H. Hoh, J. P. Cleavland, C. B. Prater, J.-P. Revel, P. K. Hansma: Quantitized adhesion detected with the atomic force microscope, J. Am. Chem. Soc. 114, 4917–4918 (1992)Google Scholar
  166. 32.166.
    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H. E. Gaub: How strong is a covalent bond?, Science 283, 1727–1730 (1999)Google Scholar
  167. 32.167.
    H. Skulason, C. D. Frisbie: Contact mechanics modeling of pull-off measurements: Effect of solvent, probe radius, and chemical binding probability on the detection of single-bond rupture forces by atomic force microscopy, Anal. Chem. 74, 3096–3104 (2002)Google Scholar
  168. 32.168.
    H. Schonherr, V. Chechik, C. J. M. Stirling, G. J. Vancso: Monitoring surface reactions at an AFM tip: An approach to following reaction kinetics in self-assembled monolayers on the nanometer scale, J. Am. Chem. Soc. 122, 3679–3687 (2000)Google Scholar
  169. 32.169.
    M. P. L. Werts, E. W. V. D. Vegte, G. Hadziioannou: Surface chemical reactions probed with scanning force microscopy, Langmuir 13, 4939–4942 (1997)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of ChemistryTexas A& M UniversityCollege StationUSA
  3. 3.MEMS Devices and Reliability Physics DepartmentSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations