Encyclopedia of Neuroscience

2009 Edition
| Editors: Marc D. Binder, Nobutaka Hirokawa, Uwe Windhorst


  • David E. Nichols
  • Lynette A. Jones
  • Sylvia Lucas
  • Pamela Souza
  • Lars Nyberg
  • Reza Habib
  • Ikuo Homma
  • Arjen M. Strijkstra
  • Thomas Hellwig-Bürgel
  • Menno P. Witter
  • Yehezkel Ben-Ari
  • Alfonso Represa
  • Patrizia Casaccia-Bonnefil
  • Siming Shen
  • David C. Lin
  • Kiyomi Koizumi
  • Jean Champagnat
  • Michel A. Hofman
  • Fernando Cervero
  • Antoine Adamantidis
  • Luis de Lecea
  • Dick F. Swaab
  • Paul J. Lucassen
  • Paul J. Lucassen
  • Qian Gao
  • Tamas Horvath
  • Eric Fliers
  • Heinz Boeker
Reference work entry
DOI: https://doi.org/10.1007/978-3-540-29678-2_8



The habenula (from Greek = habenulare, small rein) consists of the medial and lateral habenular nuclei, which are situated in the dorsal diencephalon of all vertebrates. The habenular nuclei together with the habenular commissure and pineal gland are also referred to as epithalamus. The habenular nuclei convey limbic forebrain information (from posterior septum, pallidum, lateral hypothalamus) to regulatory midbrain nuclei (interpeduncular nucleus, raphé, ventral tegmental area, laterodorsal and pedunculopontine tegmental nuclei). The habenular nuclei are thought to be involved in stress, maternal behavior, reward, and learning.



Daily activities or routine acquired to adjust oneself to environment. It is maintained by repeated automatically for a long period of one's life.

 Long-Term Memory

Habit Formation



Habituation is a simple form of non associative memory, common to all sensory systems, which is...


Essential Tremor Cerebral Spinal Fluid Hippocampal Formation Torpor Bout Daily Torpor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181PubMedGoogle Scholar
  2. 2.
    Presti D, Nichols D (2004) Biochemistry and neuropharmacology of psilocybin mushrooms. In: Metzner R (ed) Teonanacatl: sacred mushroom of visions. Four Trees, El Verano, CA, pp 89–108Google Scholar
  3. 3.
    Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9:3897–3902PubMedGoogle Scholar
  4. 4.
    Kurrasch-Orbaugh DM, Watts VJ, Barker EL, Nichols DE (2003) Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304:229–237PubMedGoogle Scholar
  5. 5.
    Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE (2003) A complex signaling cascade links the serotonin 2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 86:980–991PubMedGoogle Scholar
  6. 6.
    Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171PubMedGoogle Scholar
  7. 7.
    Lambe EK, Aghajanian GK (2001) The role of Kv1 2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963PubMedGoogle Scholar
  8. 8.
    Lambe EK, Aghajanian GK (2006) Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology 31:1682–1689PubMedGoogle Scholar
  9. 9.
    Zhang ZW, Arsenault D (2005) Gain modulation by serotonin in pyramidal neurones of the rat prefrontal cortex. J Physiol 566:379–394PubMedGoogle Scholar
  10. 10.
    Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495–507PubMedGoogle Scholar
  11. 1.
    Jones LA, Lederman SJ (2006) Human hand function. Oxford University Press, New YorkGoogle Scholar
  12. 2.
    Gardner EP, Martin JM, Jessell TM (2000) The bodily senses. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 430–450Google Scholar
  13. 3.
    Gandevia SC (1996) Kinesthesia: roles for afferent signals and motor commands. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, section 12: Exercise regulation and integration of multiple systems. Oxford University Press, New York, pp 128–172Google Scholar
  14. 4.
    Chapman CE (1994) Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can J Physiol Pharmacol 72:558–570PubMedGoogle Scholar
  15. 5.
    Goodwin AW, Wheat HE (2004) Sensory signals in neural populations underlying tactile perception and manipulation. Annu Rev Neurosci 27:53–77PubMedGoogle Scholar
  16. 6.
    Klatzky RL, Lederman SJ (2003) Touch. In: Healy AF, Proctor RW (eds) Experimental psychology, vol 4: Handbook of psychology (Weiner IB, Editor-in-Chief). Wiley, New York, pp 147–176Google Scholar
  17. 7.
    Klatzky RL, Lederman SJ (2003) The haptic identification of everyday life objects. In: Hatwell Y, Streri A, Gentaz E (eds) Touching for knowing: cognitive psychology of haptic manual perception. John Benjamins, Amsterdam, pp 105–121Google Scholar
  18. 8.
    Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cognit Psychol 19:342–368PubMedGoogle Scholar
  19. 9.
    Lederman SJ, Klatzky RL (1998) The hand as a perceptual system. In: Connolly KJ (ed) The Psychobiology of the hand. McKeith Press, London, pp 16–35Google Scholar
  20. 10.
    Binkofski F, Kunesch E, Classen J, Seitz RJ, Freund HJ (2001) Tactile apraxia: unimodal apractic disorder of tactile object recognition associated with parietal lobe lesions. Brain 124:132–144PubMedGoogle Scholar
  21. 1.
    Headache Classification Subcommittee of the International Headache Society (2004) The international classification of headache disorders, 2nd edn. Cephalagia 24 Suppl 1:9–160Google Scholar
  22. 2.
    Lipton RB, Stewart WF, Diamond S et al. (2001)Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache 41:646–657PubMedGoogle Scholar
  23. 3.
    Rasmussen BK, Jensen R, Schroll M, Olesen J (1991) Epidemiology of headache in a general population-a prevalence study. J Clin Epidemiol 44:1147–1157PubMedGoogle Scholar
  24. 4.
    Dodick DW, Rozen TD, Goadsby PJ, Silberstein SD (2000) Cluster headache. Cephalagia 20:787–803Google Scholar
  25. 5.
    Silberstein SD (2000) Practice parameter: evidence-based guidelines for migraine headache. Neurology 55:754–762PubMedGoogle Scholar
  26. 6.
    Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine: current understanding and treatment. N Engl J Med 346:257–270PubMedGoogle Scholar
  27. 7.
    Silberstein SD, Lipton RB, Goadsby PJ (1998) The pathophysiology of primary headache. In: Silberstein SD, Goadsby PJ (eds) Headache in clinical practice. Isis Medical Media, Oxford, UK, pp 41–58Google Scholar
  28. 8.
    Lucas SM (2002) Initial abortive treatments for migraine headache. Curr Treat Options Neurol 4:343–350PubMedGoogle Scholar
  29. 9.
    Silberstein SD, Lipton RB (2001) Chronic daily headache, including transformed migraine, chronic tension-type headache and medication overuse. In: Silberstein SD, Lipton RB, Dalessio DJ (eds) Wolff's headache and other head pain. Oxford University Press, New York, pp 247–282Google Scholar
  30. 10.
    Goadsby PJ, Lipton RB (1997) A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic features including new cases. Brain 120:193–209PubMedGoogle Scholar
  31. 1.
    Dillon H (1999) NAL-NL1: A new prescriptive fitting procedure for non-linear hearing aids. Hear J 52(4):10–16Google Scholar
  32. 2.
    Cornelisse L, Seewald R, Jamieson D (1995) The input/output formula: A theoretical approach to the fitting of personal amplification devices. J Acoust Soc Am 97(3):1854–1864PubMedGoogle Scholar
  33. 3.
    Cox R (1995) Using loudness data for hearing aid selection: The IHAFF approach. Hear J 48(2):10, 39–44Google Scholar
  34. 4.
    Van Tasell DJ (1993) Hearing loss, speech and hearing aids. J Speech Hear Res 36(2):228–244PubMedGoogle Scholar
  35. 5.
    Gordon KA, Papsin BC, Harrison RV (2003) Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Ear Hear 24(6):485–500PubMedGoogle Scholar
  36. 6.
    Silman S, Gelfand S, Silverman C (1984) Late-onset auditory deprivation: Effects of monaural versus binaural hearing aids. J Acoust Soc Am 76(5):1357–1362PubMedGoogle Scholar
  37. 7.
    Gelfand S, Silman S, Ross L (1987) Long-term effects of monaural, binaural and no amplification in subjects with bilateral hearing loss. Scand Audiol 16(4):201–207PubMedGoogle Scholar
  38. 8.
    Munro KJ, Hatton N (2000) Customized acoustic transform functions and their accuracy at predicting real-ear hearing aid performance. Ear Hear 21(1):59–69PubMedGoogle Scholar
  39. 1.
    Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123:1293–1326PubMedGoogle Scholar
  40. 2.
    Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25PubMedGoogle Scholar
  41. 3.
    Tulving E et al. (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci USA 91:2016–2020PubMedGoogle Scholar
  42. 4.
    Nyberg L, Cabeza R, Tulving E (1996) PET studies of encoding and retrieval: the HERA model. Psychon Bull Rev 3:135–148PubMedGoogle Scholar
  43. 5.
    Habib R, Nyberg L, Tulving E (2003) Hemispheric asymmetries of memory: the HERA model revisited. Trends Cogn Sci 7:241–245PubMedGoogle Scholar
  44. 6.
    Buckner RL et al. (1996) Preserved speech abilities and compensation following prefrontal damage. Proc Natl Acad Sci USA 93:1249–1253PubMedGoogle Scholar
  45. 7.
    Habib R, Nyberg L, Nilsson LG (2007) Cognitive and non-cognitive factors contributing to the longitudinal identification of successful older adults in the Betula study. Aging Neuropsychol Cogn 14(3):257–273Google Scholar
  46. 8.
    Cabeza R (2002) Hemispheric asymmetry reduction in older age: the HAROLD model. Psychol Aging 17:85–100PubMedGoogle Scholar
  47. 9.
    Persson J et al. (2006) Structure-function correlates of cognitive decline in aging. Cereb Cortex 16:907–915PubMedGoogle Scholar
  48. 10.
    Nyberg L (2002) Where encoding and retrieval meet in the brain. In: Squire LR, Schacter DL (eds) Neuropsychology of memory. Guilford, New York, pp 193–203Google Scholar
  49. 1.
    Haldane JS, Priestley JG (1935) Respiration. Yale University Press, New HavenGoogle Scholar
  50. 2.
    Kellogg RH (1981) Historical perspectives. In: Horrbein TF (ed) Regulation of breathing. Marcel Dekker, New York, pp 3–66Google Scholar
  51. 3.
    Euler CV (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Fishman AP, Cherniack NS, Widdicombe JG (eds) The respiratory system, Handbook of physiology. American Physiological Society, Bethesda, pp 1–68Google Scholar
  52. 1.
    Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New YorkGoogle Scholar
  53. 2.
    Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826PubMedGoogle Scholar
  54. 3.
    Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966Google Scholar
  55. 4.
    Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T (2006) Circannual control of hibernation by HP complex in the brain. Cell 125:161–172PubMedGoogle Scholar
  56. 5.
    Strijkstra AM (2006) Good and bad in the hibernating brain. J Brit Interplanet Soc 59:119–123Google Scholar
  57. 6.
    Carey HV, Andrews MT, Martin SL (2004) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181Google Scholar
  58. 7.
    Heller HC (1979) Hibernation: neural aspects. Ann Rev Physiol 41:305–321Google Scholar
  59. 8.
    Drew KL, Buck L, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance, J Neurochem 102:1713–1726PubMedCentralPubMedGoogle Scholar
  60. 9.
    Arendt T, Stieler J, Strijkstra AM, Hut RA, Rűdiger J, Van der Zee EA, Harkany T, Holzer M, Härtig W (2003) Reversible PHF-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981PubMedGoogle Scholar
  61. 10.
    Millesi E, Prossinger H, Dittami JP, Fieder M (2001) Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J Biol Rhythms 16:264–271PubMedGoogle Scholar
  62. 1.
    Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59:15–26PubMedGoogle Scholar
  63. 2.
    Wang and Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308Google Scholar
  64. 3.
    Siddiq A, Aminova LR, Ratan RR (2007) Hypoxia inducible factor prolyl 4-hydroxylase enzymes: Center stage in the battle against hypoxia. Metabolic compromise and oxidative stress. Neurochem Res 32:931–946PubMedCentralPubMedGoogle Scholar
  65. 4.
    Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657PubMedGoogle Scholar
  66. 5.
    Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007) Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178(12):7516–7519PubMedGoogle Scholar
  67. 6.
    Basu A, Lazovic J, Krady JK, Mauger DT, Rothstein RP, Smith MB, Levison SW (2005) Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J Cereb Blood Flow Metab 25:17–29PubMedGoogle Scholar
  68. 7.
    Schuster DP, Brody SL, Zhou Z, Bernstein M, Arch R, Link D, Mueckler M (2007) Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am J Physiol Lung Cell Mol Physiol 292:L845–851PubMedGoogle Scholar
  69. 8.
    Jensen RL, Ragel BT, Whang K, Gillespie D (2006) Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol 78:233–247PubMedGoogle Scholar
  70. 9.
    Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, Jensen RL (2007) Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 13:2441–2448PubMedGoogle Scholar
  71. 10.
    Jelkmann W (2005) Effects of erythropoietin on brain function. Current Pharm Biotechnol 6:65–79Google Scholar
  72. 1.
    Witter MP, Amaral DG (2004) The hippocampal region. In: Paxinos G (ed) The rat brain, 3rd edn. Elsevier, San Diego, CA, US, London, UK, pp 637–703Google Scholar
  73. 2.
    Eichenbaum H, Yonelinas AR, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci Apr 6; [Epub ahead of print]Google Scholar
  74. 3.
    Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619PubMedGoogle Scholar
  75. 4.
    Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30:133–135PubMedGoogle Scholar
  76. 5.
    Gold JJ, Squire LR (2006) The anatomy of amnesia: neurohistological analysis of three new cases. Learn Mem 13:699–710PubMedGoogle Scholar
  77. 6.
    Haan HM de, Wyatt JS, Roth S, Vargha-Khadem F, Gadian D, Mishkin M (2006) Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 9:350–358PubMedGoogle Scholar
  78. 7.
    Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79PubMedGoogle Scholar
  79. 8.
    Aggleton JP, McMackin D, Carpenter K, Hornak J, Kapur N, Halpin S, Wiles CM, Kamel H, Brennan P, Carton S, Gaffan D (2000) Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123:800–815.PubMedGoogle Scholar
  80. 9.
    Harding A, Halliday G, Caine D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123:141–154PubMedGoogle Scholar
  81. 10.
    Werf YD, Van der Witter MP, Uylings HB, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627PubMedGoogle Scholar
  82. 1.
    Deweer B, Pillon B, Pochon JB, Dubois B (2001) Is the HM story only a “remote memory”? Some facts about hippocampus and memory in humans. Behav Brain Res 127:209–224PubMedGoogle Scholar
  83. 2.
    Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedGoogle Scholar
  84. 3.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136PubMedGoogle Scholar
  85. 4.
    Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562 (Part 1):9–26PubMedGoogle Scholar
  86. 5.
    Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87(4):1215–1284PubMedGoogle Scholar
  87. 6.
    Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘menage a trois.’ Trends Neurosci 20(11):523–529PubMedGoogle Scholar
  88. 7.
    Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, Ben-Ari Y, Khazipov R (2006) Maternal oxytocin prepares fetal neurons to delivery by triggering an inhibitory switch in GABA signaling. Science 314:1788–1792PubMedGoogle Scholar
  89. 8.
    Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421PubMedGoogle Scholar
  90. 9.
    Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V (2005) Recurrent mossy fibers establish aberrant kainate receptor operated synapses on granule cells from epileptic rats. J Neurosci 25:8229–8239PubMedGoogle Scholar
  91. 10.
    Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49:786–794PubMedCentralPubMedGoogle Scholar
  92. 1.
    Yang XJ (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662PubMedGoogle Scholar
  93. 2.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedGoogle Scholar
  94. 3.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120PubMedGoogle Scholar
  95. 4.
    de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749PubMedGoogle Scholar
  96. 5.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMedCentralPubMedGoogle Scholar
  97. 6.
    Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293PubMedGoogle Scholar
  98. 7.
    Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506PubMedGoogle Scholar
  99. 8.
    Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482PubMedGoogle Scholar
  100. 9.
    He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P (2007) The transcription factor Yin Yang1 is essential for oligodendrocyte progenitor differentiation. Neuron (In press)Google Scholar
  101. 10.
    Kondo T (2006) Epigenetic alchemy for cell fate conversion. Curr Opin Genet Dev 16:502–507PubMedGoogle Scholar
  102. 1.
    Julian FR, Morgan DL (1979) The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol 293:365–378PubMedGoogle Scholar
  103. 2.
    Herzog W, Leonard TR (2000) The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech 33(5):531–542PubMedGoogle Scholar
  104. 3.
    Joyce GC, Rack PM, Westbury DR (1969) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol (London) 204(2):461–474Google Scholar
  105. 4.
    Lin DC, Rymer WZ (1993) Mechanical properties of cat soleus muscle elicited by sequential ramp stretches: implications for control of muscle. J Neurophysiol 70(3):997–1008PubMedGoogle Scholar
  106. 5.
    Nichols TR, Lin DC, Huyghues-Despointes CMJI (1999) The role of musculoskeletal mechanics in motor coordination. In: Binder MD (ed) Peripheral and Spinal mechanisms in the neural control of movement. Elsevier Science, Amsterdam, pp 369–378Google Scholar
  107. 6.
    Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 39(1):119–142PubMedGoogle Scholar
  108. 7.
    Haftel VK, Bichler EK, Nichols TR, Pinter MJ, Cope TC (2004) Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat. J Neurophysiol 91:2164–2171PubMedGoogle Scholar
  109. 8.
    Campbell KS, Moss RL (2000) A thixotropic effect in contracting rabbit psoas muscle: prior movement reduces the initial tension response to stretch. J Physiol (London) 525(Pt 2):531–548Google Scholar
  110. 9.
    Huyghues-Despointes CMJI, Cope TC, Nichols TR (2003) Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect of movement history. J Neurophysiol 90:1547–1555PubMedGoogle Scholar
  111. 10.
    Lin DC, Rymer WZ (2001) Damping actions of the neuromuscular system with inertial loads: human flexor pollicis longus muscle. J Neurophysiol 85(3):1059–1066PubMedGoogle Scholar
  112. 1.
    Bernard C (1878–9) Leçons sur les phenomenes de la vie communs aux animaux et aux vegetaux, vols 1 and 2, Librarie. J-B Balliere et Fils, ParisGoogle Scholar
  113. 2.
    Vander A, Sherman J, Luciano D (2001) Human physiology, 8th edn. McGraw-Hill, New York, p 6Google Scholar
  114. 3.
    Cannon WB (1932) The wisdom of the body. W. W. Norton, New YorkGoogle Scholar
  115. 4.
    Selye H (1975) Homeostasis and heterostasis. In: Brooks CMcC, Koizumi K, Pinkston JO (eds) The life and contributions of Walter Bradford Cannon. State University of New York, Downstate Medical Center, New York, pp 108–112Google Scholar
  116. 1.
    Borday C, Coutinho A, Germon I, Champagnat J, Fortin G (2006) Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo. J Neurobiol 66:1285–1301PubMedGoogle Scholar
  117. 2.
    Chatonnet F, Domínguez del Toro E, Thoby-Brisson M, Champagnat J, Fortin G, Rijli FM, Thaeron-Antono C (2003) From hindbrain segmentation to breathing after birth: developmental patterning in rhombomeres 3 and 4. Mol Neurobiol 28:277–294PubMedGoogle Scholar
  118. 3.
    Coutinho AP, Borday C, Gilthorpe J, Jungbluth S, Champagnat J, Lumsden A, Fortin G (2004) Induction of a parafacial rhythm generator by rhombomere 3 in the chick embryo. J Neurosci 24:9383–9390PubMedGoogle Scholar
  119. 4.
    Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242PubMedCentralPubMedGoogle Scholar
  120. 5.
    Guimarães L, Eduardo Domínguez-del-Toro E, Chatonnet F, Wrobel L, Cristina Pujades C, Monteiro LS, Champagnat J (2007) Exposure to retinoic acid at the onset of hindbrain segmentation induces episodic breathing in mice. Eur J Neurosci, 25:3526–3536PubMedGoogle Scholar
  121. 6.
    Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115PubMedGoogle Scholar
  122. 7.
    Mc Crimmon DR, Milsom WK, Alheid GF (2004) The rhombencephalon and breathing: a view from the pons. Resp Physiol Neurobiol 143:103–337Google Scholar
  123. 8.
    Stornetta RL, Moreira TS, Takakura AC, Kanq BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26:10305–10314PubMedGoogle Scholar
  124. 9.
    Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G (2005) Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 25:4307–4318PubMedGoogle Scholar
  125. 10.
    Wallén-Mackenzie A, Gezelius H, Enjin A, Thoby-Brisson M, Nygard A, Fujiyama F, Fortin G, Kullander K (2006) Glutamatergic signaling mediated by VGLUT2 is required for respiratory rhythm generation but is dispensable for locomotor central pattern generation. J Neurosci 26:12294–12307PubMedGoogle Scholar
  126. 1.
    Hastings MH, Herzog ED (2004) Clock genes, oscillators, and cellular networks in the suprachiasmatic nucleus. J Biol Rhythms 19:400–413PubMedGoogle Scholar
  127. 2.
    Hofman MA (2003) Circadian oscillations of neuropeptide expression in the human biological clock. J Comp Physiol A 189:823–831Google Scholar
  128. 3.
    Hofman MA (2004) The brain's calendar: neural mechanisms of seasonal timing. Biol Rev 79:61–77PubMedGoogle Scholar
  129. 4.
    Hofman MA, Swaab DF (2002) A brain for all seasons: cellular and molecular mechanisms of photoperiodic plasticity. Prog Brain Res 132:255–280Google Scholar
  130. 5.
    Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5:33–51PubMedGoogle Scholar
  131. 6.
    Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309:109–118PubMedGoogle Scholar
  132. 7.
    Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157PubMedGoogle Scholar
  133. 8.
    Skene D, Swaab DF (2003) Melatonin rhythmicity: effect of age and Alzheimer's disease. Exp Gerontol 38:199–206PubMedGoogle Scholar
  134. 9.
    Swaab DF (2004) The human hypothalamus: basic and clinical aspects. Part I: Nuclei of the human hypothalamus. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, vol 79. Elsevier, Amsterdam.Google Scholar
  135. 10.
    Van Someren EJW (ed) (2000) Circadian rhythms and sleep in human aging. Chronobiol Int 17 (special issue):233–432PubMedGoogle Scholar
  136. 1.
    Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68:13–23PubMedGoogle Scholar
  137. 2.
    Cervero F, Gilbert R, Hammond RGE, Tanner J (1993) Development of secondary hyperalgesia following non-painful thermal stimulation of the skin: a psychophysical study in man. Pain 54:181–189PubMedGoogle Scholar
  138. 3.
    Merskey H, Bogduk N (1994) Classification of chronic pain, IASP Press, Seattle, 222ppGoogle Scholar
  139. 4.
    Hardy JD, Wolff HG, Goodell H (1950) Experimental evidence on the nature of cutaneous hyperalgesia. J Clin Invest 29:115–140PubMedCentralPubMedGoogle Scholar
  140. 5.
    Treede R-D, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38:397–421PubMedGoogle Scholar
  141. 6.
    Price TJ, Cervero F, de Koninck Y (2005) Role of Cation-chloride-cotransporters (CCC) in pain and hyperalgesia. Curr Top Med Chem 5:547–555PubMedCentralPubMedGoogle Scholar
  142. 7.
    LaMotte RH, Shain CN, Simone DA, Tsai E-FP (1991) Neurogenic hyperalgesia: Psychophysical studies of underlying mechanisms. J Neurophysiol 66:190–211PubMedGoogle Scholar
  143. 8.
    Torebjörk HE, Lundberg LER, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol (Lond) 448:765–780Google Scholar
  144. 9.
    Sandkühler J (2007) Understanding LTP in pain pathways. Molecular Pain 3:9 http://www.molecularpain.com/content/3/1/9 Google Scholar
  145. 10.
    Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942PubMedGoogle Scholar
  146. 1.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322PubMedGoogle Scholar
  147. 2.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M, (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573PubMedGoogle Scholar
  148. 3.
    Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171PubMedGoogle Scholar
  149. 4.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716PubMedGoogle Scholar
  150. 5.
    Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787PubMedGoogle Scholar
  151. 6.
    Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature DOI 10.1038/nature 06310:Google Scholar
  152. 7.
    Peyron C, Faraco J, Rogers W, B, Ripley S, Overeem Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991PubMedGoogle Scholar
  153. 8.
    Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469PubMedGoogle Scholar
  154. 9.
    Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168PubMedGoogle Scholar
  155. 10.
    Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556PubMedGoogle Scholar
  156. 1.
    Swaab DF (2003) The human hypothalamus. Basic and clinical Aspects, pt 1: Nuclei of the hypothalamus. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology. Elsevier, AmsterdamGoogle Scholar
  157. 2.
    Van Londen L, Goekoop JG, Van Kempen GMJ, Frankhuijsen-Sierevogel AC, Wiegant VM, Van der Velde EA, De Wied D (1997) Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacol 17:284–292Google Scholar
  158. 3.
    Ishunina TA, Swaab DF (2002) Neurohypophyseal peptides in aging and Alzheimer's disease. Ageing Res Rev 1:537–558PubMedGoogle Scholar
  159. 4.
    Lucassen PJ, Salehi A, Pool CW, Gonatas NK, Swaab DF (1994) Activation of vasopressin neurons in aging and in Alzheimer's Disease. J Neuroendocrinol 6:673–679PubMedGoogle Scholar
  160. 5.
    Insel TR (1997) A neurobiological basis of social attachment. Am J Psychiatry 154:726–735PubMedGoogle Scholar
  161. 6.
    Meynen G, Unmehopa UA, Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJ (2006) Increased arginine vasopressin mRNA expression in the human Hypothalamus in depression: a preliminary report. Biol Psychiatry 60:892–895PubMedGoogle Scholar
  162. 7.
    Erkut ZA, Pool CW, Swaab DF (1998) Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons. J Clin Endocrinol Metab 83:2066–2073PubMedGoogle Scholar
  163. 8.
    Erkut ZA, Gabreëls BATF, Eikelenboom J, Leeuwen FW, Van Swaab DF (2002) Glucocorticoid treatment is associated with decreased expression of processed AVP but not of proAVP, neurophysin or oxytocin in the human hypothalamus: Are PC1 and PC2 involved? Neuroendocrinol Lett 23:33–44PubMedGoogle Scholar
  164. 1.
    De Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedGoogle Scholar
  165. 2.
    Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1:1–19PubMedGoogle Scholar
  166. 3.
    Neumeister A, Wood S, Bonne O et al. (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 57:935–937PubMedGoogle Scholar
  167. 4.
    Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194PubMedGoogle Scholar
  168. 5.
    Bourdeau I, Bard C, Noel B et al. (2002) Loss of brain volume in endogenous Cushing's syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab 87:1949–1954PubMedGoogle Scholar
  169. 6.
    Lucassen PJ, Muller MB, Holsboer F et al. (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158:453–468PubMedGoogle Scholar
  170. 7.
    Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are Neurogenesis, glial changes and apoptosis indicated. Eur Arch gen Psy & Clin Neusrosci 257(5):250–260Google Scholar
  171. 8.
    Fuchs E, Czeh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 14(suppl 5):S481–S490PubMedGoogle Scholar
  172. 9.
    Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 21:293–307PubMedGoogle Scholar
  173. 10.
    Ising M, Lauer CJ, Holsboer F, Modell S (2005) The Munich vulnerability study on affective disorders: premorbid neuroendocrine profile of affected high-risk probands. J Psychiatr Res 39:21–28PubMedGoogle Scholar
  174. 1.
    Yaghmaie F, Saeed O, Garan SA, Voelker MA, Gouw AM, Freitag W, Sternberg H, Timiras PS (2006) “Age-dependent loss of insulin-like growth factor-1 receptor immunoreactive cells in the supraoptic hypothalamus is reduced in calorically restricted mice.” Int J Dev Neurosci 24(7):431–436PubMedGoogle Scholar
  175. 2.
    Mohr B (1840) Hypertrophie der Hypophysis cerebri und adurch bedingter Druck auf die Hirngrundflache, ins besondere auf die Sehnerven, das Chiasma derselben und den linkseitigen Hirnschinkel. Wschr des Heilk 6:565–571Google Scholar
  176. 1.
    Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM (1987) Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238:78–802PubMedGoogle Scholar
  177. 2.
    Lechan RM, Fekete C (2006) The TRH neuron: a hypothalamic integrator of energy metabolism. Progr Brain Res 153:209–235Google Scholar
  178. 3.
    Fliers E, Noppen NW, Wiersinga WM, Visser TJ, Swaab DF (1994) Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. J Comp Neurol 350:311–323PubMedGoogle Scholar
  179. 4.
    Fliers E, Alkemade A, Wiersinga WM, Swaab DF (2006) Hypothalamic thyroid hormone feedback in health and disease. Progr Brain Res 153:189–207Google Scholar
  180. 5.
    Alkemade A, Friesema EC, Unmehopa UA, Fabriek BO, Kuiper GG, Leonard JL, Wiersinga WM, Swaab DF, Visser TJ, Fliers E (2005) Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus. J Clin Endocrinol Metab 90:4322–4334PubMedGoogle Scholar
  181. 6.
    Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. LANCET 364:1435–1437PubMedGoogle Scholar
  182. 7.
    Alkemade A, Friesema EC, Kuiper GG, Wiersinga WM, Swaab DF, Visser TJ, Fliers E (2006) Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary. Eur J Endocrinol 154:491–500PubMedGoogle Scholar
  183. 8.
    Prummel MF, Brokken LJ, Meduri G, Misrahi M, Bakker O, Wiersinga WM (2000) Expression of the thyroid-stimulating hormone receptor in the folliculo- stellate cells of the human anterior pituitary. J Clin Endocrinol Metab 85:4347–4353PubMedGoogle Scholar
  184. 9.
    Wiersinga WM (2005) Nonthyroidal illness. Braverman LE, Utiger RD The thyroid, 9th edn. Lippincot, Williams and Wilkins, Philadelphia, PA, pp 247–263Google Scholar
  185. 10.
    Van den Berghe G, de Zegher F, Baxter RC, Veldhuis JD, Wouters P, Schetz M, Verwaest C, Lauwers P, Bouillon R, Bowers CY (1998) Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab 83:309–319PubMedGoogle Scholar
  186. 11.
    Fliers E, Guldenaar SE, Wiersinga WM, Swaab DF (1997) Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab 82:4032–4036PubMedGoogle Scholar
  187. 1.
    Gelder M, Gath D, Mayou R, Cowen P (1996) Oxford textbook of psychiatry, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  188. 2.
    Freud S (1893) On the psychical mechanisms of hysterical phenomena. In: Strachey J (ed) The standard edition of the complete psychological works, vol III. Hogart, London, pp 25–42Google Scholar
  189. 3.
    Breuer J, Freud S (1893–95) Studies on hysteria. In: Strachey J (ed) The standard edition of the complete psychological works, vol II. Hogart, LondonGoogle Scholar
  190. 4.
    Janet P (1894) État mentale des hystériques. Rueff, ParisGoogle Scholar
  191. 5.
    Janet P (1889) L'automatisme psychologique. Alcan, ParisGoogle Scholar
  192. 6.
    Kretschmer E (1960) Hysteria: reflex and instinct. Peter Owen, LondonGoogle Scholar
  193. 7.
    Nemiah JC (1998) Early concepts of trauma, dissociation and the unconscious: their history and current implications. In: Bremner JD, Marmar CR (eds) Trauma, memory and dissociation. American Psychiatric Press, Washington DC, pp 1–26Google Scholar
  194. 8.
    Hilgard ER (1986) Divided consciousness: the multiple controls in human thought and action. Wiley, New YorkGoogle Scholar
  195. 9.
    Kapfhammer HP (2001) Dissociative disorders and conversion disorders. In: Henn F, Sartorius N, Helmchen H, Lauter H (eds) Specific psychiatric disorders. Contemporary psychiatry, vol III. Springer, Berlin Heidelberg New York, pp 88–108Google Scholar
  196. 10.
    Bremner JD, Vermetten E, Southwick SM, Kryston JH, Charney DS (1989) Trauma, memory and dissociation: an integrative formulation. In: Bremner JD, Marmar CR (eds) Trauma, memory and dissociation. American Psychiatric Press, Washington DC, pp 365–402Google Scholar
  197. 11.
    Vuilleumier P (2005) Hysterical conversion and brain function. Prog Brain Res 150:309–329PubMedGoogle Scholar
  198. 12.
    Yarom N (1997) A matrix of hysteria. Int J Psychoanal 78:1119–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2008

Authors and Affiliations

  • David E. Nichols
    • 1
  • Lynette A. Jones
    • 2
  • Sylvia Lucas
    • 3
  • Pamela Souza
    • 4
  • Lars Nyberg
    • 5
  • Reza Habib
    • 6
    • 7
  • Ikuo Homma
    • 8
  • Arjen M. Strijkstra
    • 9
  • Thomas Hellwig-Bürgel
    • 10
  • Menno P. Witter
    • 11
    • 12
  • Yehezkel Ben-Ari
    • 13
  • Alfonso Represa
    • 13
  • Patrizia Casaccia-Bonnefil
    • 14
  • Siming Shen
    • 14
  • David C. Lin
    • 15
  • Kiyomi Koizumi
    • 16
  • Jean Champagnat
    • 17
  • Michel A. Hofman
    • 18
  • Fernando Cervero
    • 19
  • Antoine Adamantidis
    • 20
  • Luis de Lecea
    • 20
  • Dick F. Swaab
    • 21
    • 24
  • Paul J. Lucassen
    • 22
  • Paul J. Lucassen
    • 23
  • Qian Gao
    • 25
  • Tamas Horvath
    • 25
  • Eric Fliers
    • 26
  • Heinz Boeker
    • 27
  1. 1.Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.University of Washington Medical CenterSeattleUSA
  4. 4.Department of Speech and Hearing SciencesUniversity of WashingtonSeattleUSA
  5. 5.Departments of Radiation Sciences (Radiology) and Integrative Medical Biology (Physiology)Umeå UniversityUmeåSweden
  6. 6.Department of Psychology, Department of Computer Science, and School of MedicineSouthern Illinois University CarbondaleCarbondaleUSA
  7. 7.Memorial Hospital of CarbondaleSouthern Illinois Health CareCarbondaleUSA
  8. 8.Department of PhysiologyShowa University School of MedicineTokyoJapan
  9. 9.Department of ChronobiologyUniversity of GroningenGroningenThe Netherlands
  10. 10.Institute of Physiology, University of LübeckLübeckGermany
  11. 11.Kauli Institute for System Neuroscience, Centre for the Biology of Memory, Department of NeuroscienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
  12. 12.Institute for Clinical and Experimental Neurosciences, Department of Anatomy & NeurosciencesVU University Medical CenterAmsterdamThe Netherlands
  13. 13.INMED, INSERM U29Université de la MéditerranéeCampus de LuminyFrance
  14. 14.Robert Wood Johnson Medical School UMDNJPiscatawayUSA
  15. 15.Programs in Bioengineering and NeuroscienceWashington State UniversityPullmanUSA
  16. 16.Department of Physiology and PharmacologyState University of New York, Downstate Medical CenterBrooklynUSA
  17. 17.UPR CNRS 2216 Neurobiologie Génétique et IntégrativeFRC CNRS Institut de Neurobiologie Alfred FessardGif sur YvetteFrance
  18. 18.Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
  19. 19.Anesthesia Research Unit (Faculty of Medicine), Faculty of Dentistry and McGill Centre for Research on PainMcGill UniversityMontrealCanada
  20. 20.Department of Psychiatry and Behavioral SciencesStanford University School of MedicinePalo AltoUSA
  21. 21.Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
  22. 22.Centre for Neuroscience, Swammerdam Institute of Life Sciences,University of AmsterdamAmsterdamThe Netherlands
  23. 23.SILS Centre for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
  24. 24.Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
  25. 25.Section of Comparative Medicine, Department of Ob/Gyn & Reproductive Sciences and NeurobiologyYale University School of MedicineNew HavenUSA
  26. 26.Dept of Endocrinology and Metabolism, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  27. 27.University Hospital of Psychiatry Zurich, Hospital for Affective Disorders and General Psychiatry Zurich EastZurichSwitzerland