K-Theory and Intersection Theory

  • Henri Gillet


The problem of defining intersection products on the Chow groups of schemes has a long history. Perhaps the first example of a theorem in intersection theory is Bézout’s theorem, which tells us that two projective plane curves C and D, of degrees c and d and which have no components in common, meet in at most cd points. Furthermore if one counts the points of CD with multiplicity, there are exactly cd points. Bezout’s theorem can be extended to closed subvarieties Y and Z of projective space over a field k, ℙ k n , with dim(Y) + dim(Z) = n and for which YZ consists of a finite number of points.


Spectral Sequence Chern Class Intersection Theory Coherent Sheave Cartier Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Séminaire C. Chevalley; 2e année: 1958. Anneaux de Chow et applications. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958.Google Scholar
  2. 2.
    Théorie des intersections et théorème de Riemann–Roch. Springer-Verlag, Berlin, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225.Google Scholar
  3. 3.
    Paul Baum, William Fulton, and Robert MacPherson. Riemann–Roch for singular varieties. Inst. Hautes Études Sci. Publ. Math., (45):101–145, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Pierre Berthelot. Altérations de variétés algébriques (d’après A. J. de Jong). Astérisque, (241):Exp. No. 815, 5, 273–311, 1997. Séminaire Bourbaki, Vol. 1995/96.Google Scholar
  5. 5.
    A.A. Be?linson. Higher regulators and values of L-functions. In Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, pages 181–238. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.Google Scholar
  6. 6.
    J. G. Biswas and V. Srinivas. The Chow ring of a singular surface. Proc. Indian Acad. Sci. Math. Sci., 108(3):227–249, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Bloch. A note on Gersten’s conjecture in the mixed characteristic case. In Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), volume 55 of Contemp. Math., pages 75–78. Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  8. 8.
    Spencer Bloch. K2 and algebraic cycles. Ann. of Math. (2), 99:349–379, 1974.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Spencer Bloch and Arthur Ogus. Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4), 7:181–201 (1975), 1974.Google Scholar
  10. 10.
    Kenneth S. Brown. Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc., 186:419–458, 1974.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kenneth S. Brown and Stephen M. Gersten. Algebraic K-theory as generalized sheaf cohomology. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 266–292. Lecture Notes in Math., Vol. 341. Springer-Verlag, Berlin, 1973.Google Scholar
  12. 12.
    Luther Claborn and Robert Fossum. Generalizations of the notion of class group. Illinois J. Math., 12:228–253, 1968.zbMATHMathSciNetGoogle Scholar
  13. 13.
    Jean-Louis Colliot-Thélène, Raymond T. Hoobler, and Bruno Kahn. The Bloch-Ogus-Gabber theorem. In Algebraic K -theory (Toronto, ON, 1996), volume 16 of Fields Inst. Commun., pages 31–94. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  14. 14.
    A.J. de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., (83):51–93, 1996.zbMATHCrossRefGoogle Scholar
  15. 15.
    Samuel Eilenberg and Norman Steenrod. Foundations of algebraic topology. Princeton University Press, Princeton, New Jersey, 1952.zbMATHGoogle Scholar
  16. 16.
    A. D. Elmendorf, I. Kříž, M. A. Mandell, and J. P. May. Modern foundations for stable homotopy theory. In Handbook of algebraic topology, pages 213–253. North-Holland, Amsterdam, 1995.CrossRefGoogle Scholar
  17. 17.
    William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.zbMATHGoogle Scholar
  18. 18.
    Ofer Gabber. K-theory of Henselian local rings and Henselian pairs. In Algebraic K -theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), volume 126 of Contemp. Math., pages 59–70. Amer. Math. Soc., Providence, RI, 1992.Google Scholar
  19. 19.
    Ofer Gabber. Gersten’s conjecture for some complexes of vanishing cycles. Manuscripta Math., 85(3–4):323–343, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    H. Gillet. Some new Gysin homomorphisms for the Chow homology of varieties. Proc. London Math. Soc. (3), 50(1):57–68, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    H. Gillet and C. Soulé. Intersection theory using Adams operations. Invent. Math., 90(2):243–277, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    H. Gillet and C. Soulé. Descent, motives and K-theory. J. Reine Angew. Math., 478:127–176, 1996.zbMATHMathSciNetGoogle Scholar
  23. 23.
    H. Gillet and C. Soulé. Filtrations on higher algebraic K-theory. In Algebraic K -theory (Seattle, WA, 1997), volume 67 of Proc. Sympos. Pure Math., pages 89–148. Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  24. 24.
    Henri Gillet. Riemann–Roch theorems for higher algebraic K-theory. Adv. in Math., 40(3):203–289, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Henri Gillet. Universal cycle classes. Compositio Math., 49(1):3–49, 1983.zbMATHMathSciNetGoogle Scholar
  26. 26.
    Henri Gillet. Deligne homology and Abel-Jacobi maps. Bull. Amer. Math. Soc. (N.S.), 10(2):285–288, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Henri Gillet. Homological descent for the K-theory of coherent sheaves. In Algebraic K -theory, number theory, geometry and analysis (Bielefeld, 1982), volume 1046 of Lecture Notes in Math., pages 80–103. Springer-Verlag, Berlin, 1984.Google Scholar
  28. 28.
    Henri Gillet. Intersection theory on algebraic stacks and Q-varieties. J. Pure Appl. Algebra, 34(2–3):193–240, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Henri Gillet. Gersten’s conjecture for the K-theory with torsion coefficients of a discrete valuation ring. J. Algebra, 103(1):377–380, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Henri Gillet. K-theory and intersection theory revisited. K -Theory, 1(4):405–415, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Henri Gillet and Marc Levine. The relative form of Gersten’s conjecture over a discrete valuation ring: the smooth case. J. Pure Appl. Algebra, 46(1):59–71, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Henri Gillet and William Messing. Cycle classes and Riemann–Roch for crystalline cohomology. Duke Math. J., 55(3):501–538, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Henri A. Gillet and Robert W. Thomason. The K-theory of strict Hensel local rings and a theorem of Suslin. J. Pure Appl. Algebra, 34(2–3):241–254, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Daniel R. Grayson. Products in K-theory and intersecting algebraic cycles. Invent. Math., 47(1):71–83, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Daniel R. Grayson. Weight filtrations via commuting automorphisms. K -Theory, 9(2):139–172, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    A.Grothendieck.Élémentsdegéométriealgébrique.IV.Étudelocaledessché-mas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., (24):231, 1965.Google Scholar
  37. 37.
    A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV. Inst. Hautes Études Sci. Publ. Math., (32):356, 1967.Google Scholar
  38. 38.
    Alexander Grothendieck. La théorie des classes de Chern. Bull. Soc. Math. France, 86:137–154, 1958.zbMATHMathSciNetGoogle Scholar
  39. 39.
    Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.zbMATHGoogle Scholar
  40. 40.
    Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–208, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    J. F. Jardine. Presheaves of symmetric spectra. J. Pure Appl. Algebra, 150(2):137–154, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Shun-ichi Kimura. Fractional intersection and bivariant theory. Comm. Algebra, 20(1):285–302, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Steven L. Kleiman. Misconceptions about Kx. Enseign. Math. (2), 25(3–4):203–206 (1980), 1979.Google Scholar
  44. 44.
    Steven L. Kleiman. Cartier divisors versus invertible sheaves. Comm. Algebra, 28(12):5677–5678, 2000. Special issue in honor of Robin Hartshorne.zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Ch. Kratzer. λ-structure en K-théorie algébrique. Comment. Math. Helv., 55(2):233–254, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Andrew Kresch. Canonical rational equivalence of intersections of divisors. Invent. Math., 136(3):483–496, 1999.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Andrew Kresch. Cycle groups for Artin stacks. Invent. Math., 138(3):495–536, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Marc Levine. Bloch’s formula for singular surfaces. Topology, 24(2):165–174, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Marc Levine and Chuck Weibel. Zero cycles and complete intersections on singular varieties. J. Reine Angew. Math., 359:106–120, 1985.zbMATHMathSciNetGoogle Scholar
  50. 50.
    C.R.F. Maunder. The spectral sequence of an extraordinary cohomology theory. Proc. Cambridge Philos. Soc., 59:567–574, 1963.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    K.H. Paranjape. Some spectral sequences for filtered complexes and applications. J. Algebra, 186(3):793–806, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Claudio Pedrini and Charles A. Weibel. K-theory and Chow groups on singular varieties. In Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), volume 55 of Contemp. Math., pages 339–370. Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  53. 53.
    Daniel Quillen. Higher algebraic K-theory. I. In Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85–147. Lecture Notes in Math., Vol. 341. Springer-Verlag, Berlin, 1973.Google Scholar
  54. 54.
    Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.zbMATHGoogle Scholar
  55. 55.
    Joel Roberts. Chow’s moving lemma. In Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), pages 89–96. Wolters-Noordhoff, Groningen, 1972. Appendix 2 to: “Motives” (Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), pp. 53–82, Wolters-Noordhoff, Groningen, 1972) by Steven L. Kleiman.Google Scholar
  56. 56.
    Paul Roberts. The vanishing of intersection multiplicities of perfect complexes. Bull. Amer. Math. Soc. (N.S.), 13(2):127–130, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Paul C. Roberts. Recent developments on Serre’s multiplicity conjectures: Gabber’s proof of the nonnegativity conjecture. Enseign. Math. (2), 44(3–4):305–324, 1998.zbMATHMathSciNetGoogle Scholar
  58. 58.
    Markus Rost. Chow groups with coefficients. Doc. Math., 1:No. 16, 319–393 (electronic), 1996.zbMATHMathSciNetGoogle Scholar
  59. 59.
    Pierre Samuel. Algèbre locale. Mem. Sci. Math., no. 123. Gauthier-Villars, Paris, 1953.zbMATHGoogle Scholar
  60. 60.
    Stefan Schwede. S-modules and symmetric spectra. Math. Ann., 319(3):517–532, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Jean-Pierre Serre. Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965., volume 11 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1965.Google Scholar
  62. 62.
    Clayton Sherman. Some theorems on the K-theory of coherent sheaves. Comm. Algebra, 7(14):1489–1508, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Clayton Sherman. Group representations and algebraic K-theory. In Algebraic K -theory, Part I (Oberwolfach, 1980), volume 966 of Lecture Notes in Math., pages 208–243. Springer-Verlag, Berlin, 1982.Google Scholar
  64. 64.
    Christophe Soulé. Opérations en K-théorie algébrique. Canad. J. Math., 37(3):488–550, 1985.zbMATHMathSciNetGoogle Scholar
  65. 65.
    A.A. Suslin. Homology of GLn, characteristic classes and Milnor K-theory. In Algebraic K -theory, number theory, geometry and analysis (Bielefeld, 1982), volume 1046 of Lecture Notes in Math., pages 357–375. Springer-Verlag, Berlin, 1984.Google Scholar
  66. 66.
    R.W. Thomason and Thomas Trobaugh. Higher algebraic K-theory of schemes and of derived categories. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 247–435. Birkhäuser Boston, Boston, MA, 1990.Google Scholar
  67. 67.
    Jean-Louis Verdier. Le théorème de Riemann–Roch pour les intersections complètes. In Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974–75), pages 189–228. Astérisque, No. 36–37. Soc. Math. France, Paris, 1976.Google Scholar
  68. 68.
    Angelo Vistoli. Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math., 97(3):613–670, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Charles A. Weibel. Pic is a contracted functor. Invent. Math., 103(2):351–377, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Henri Gillet
    • 1
  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations